Cargando…
Convolutional neural networks to predict brain tumor grades and Alzheimer’s disease with MR spectroscopic imaging data
PURPOSE: To evaluate the value of convolutional neural network (CNN) in the diagnosis of human brain tumor or Alzheimer’s disease by MR spectroscopic imaging (MRSI) and to compare its Matthews correlation coefficient (MCC) score against that of other machine learning methods and previous evaluation...
Autores principales: | Acquarelli, Jacopo, van Laarhoven, Twan, Postma, Geert J., Jansen, Jeroen J., Rijpma, Anne, van Asten, Sjaak, Heerschap, Arend, Buydens, Lutgarde M. C., Marchiori, Elena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401174/ https://www.ncbi.nlm.nih.gov/pubmed/36001537 http://dx.doi.org/10.1371/journal.pone.0268881 |
Ejemplares similares
-
Altered brain high-energy phosphate metabolism in mild Alzheimer's disease: A 3-dimensional (31)P MR spectroscopic imaging study
por: Rijpma, Anne, et al.
Publicado: (2018) -
Developments in proton MR spectroscopic imaging of prostate cancer
por: Stamatelatou, Angeliki, et al.
Publicado: (2022) -
3D (31)P MR spectroscopic imaging of the human brain at 3 T with a (31)P receive array: An assessment of (1)H decoupling, T(1) relaxation times, (1)H‐(31)P nuclear Overhauser effects and NAD(+)
por: Peeters, Tom H., et al.
Publicado: (2019) -
Evaluation and comparison of unsupervised methods for the extraction of spatial patterns from mass spectrometry imaging data (MSI)
por: Prasad, Mridula, et al.
Publicado: (2022) -
Magnetic Resonance Spectroscopic Imaging and Volumetric Measurements of the Brain in Patients with Postcancer Fatigue: A Randomized Controlled Trial
por: Prinsen, Hetty, et al.
Publicado: (2013)