Cargando…
Deep learning-based automated segmentation of resection cavities on postsurgical epilepsy MRI
Accurate segmentation of surgical resection sites is critical for clinical assessments and neuroimaging research applications, including resection extent determination, predictive modeling of surgery outcome, and masking image processing near resection sites. In this study, an automated resection ca...
Autores principales: | Arnold, T. Campbell, Muthukrishnan, Ramya, Pattnaik, Akash R., Sinha, Nishant, Gibson, Adam, Gonzalez, Hannah, Das, Sandhitsu R., Litt, Brian, Englot, Dario J., Morgan, Victoria L., Davis, Kathryn A., Stein, Joel M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402390/ https://www.ncbi.nlm.nih.gov/pubmed/35988342 http://dx.doi.org/10.1016/j.nicl.2022.103154 |
Ejemplares similares
-
Remote effects of temporal lobe epilepsy surgery: Long‐term morphological changes after surgical resection
por: Arnold, T. Campbell, et al.
Publicado: (2023) -
Clinical validation of automated hippocampal segmentation in temporal lobe epilepsy
por: Hadar, Peter N., et al.
Publicado: (2018) -
Integrating Network Neuroscience Into Epilepsy Care:
Progress, Barriers, and Next Steps
por: Sinha, Nishant, et al.
Publicado: (2022) -
iEEG-recon: A Fast and Scalable Pipeline for Accurate Reconstruction of Intracranial Electrodes and Implantable Devices
por: Lucas, Alfredo, et al.
Publicado: (2023) -
SUDEP: The Worst in Epilepsy and the Hardest to Image
por: Englot, Dario J.
Publicado: (2019)