Cargando…
Ordered and deterministic cancer genome evolution after p53 loss
Although p53 inactivation promotes genomic instability(1) and presents a route to malignancy for more than half of all human cancers(2,3), the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse mo...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402436/ https://www.ncbi.nlm.nih.gov/pubmed/35978189 http://dx.doi.org/10.1038/s41586-022-05082-5 |
_version_ | 1784773176423612416 |
---|---|
author | Baslan, Timour Morris, John P. Zhao, Zhen Reyes, Jose Ho, Yu-Jui Tsanov, Kaloyan M. Bermeo, Jonathan Tian, Sha Zhang, Sean Askan, Gokce Yavas, Aslihan Lecomte, Nicolas Erakky, Amanda Varghese, Anna M. Zhang, Amy Kendall, Jude Ghiban, Elena Chorbadjiev, Lubomir Wu, Jie Dimitrova, Nevenka Chadalavada, Kalyani Nanjangud, Gouri J. Bandlamudi, Chaitanya Gong, Yixiao Donoghue, Mark T. A. Socci, Nicholas D. Krasnitz, Alex Notta, Faiyaz Leach, Steve D. Iacobuzio-Donahue, Christine A. Lowe, Scott W. |
author_facet | Baslan, Timour Morris, John P. Zhao, Zhen Reyes, Jose Ho, Yu-Jui Tsanov, Kaloyan M. Bermeo, Jonathan Tian, Sha Zhang, Sean Askan, Gokce Yavas, Aslihan Lecomte, Nicolas Erakky, Amanda Varghese, Anna M. Zhang, Amy Kendall, Jude Ghiban, Elena Chorbadjiev, Lubomir Wu, Jie Dimitrova, Nevenka Chadalavada, Kalyani Nanjangud, Gouri J. Bandlamudi, Chaitanya Gong, Yixiao Donoghue, Mark T. A. Socci, Nicholas D. Krasnitz, Alex Notta, Faiyaz Leach, Steve D. Iacobuzio-Donahue, Christine A. Lowe, Scott W. |
author_sort | Baslan, Timour |
collection | PubMed |
description | Although p53 inactivation promotes genomic instability(1) and presents a route to malignancy for more than half of all human cancers(2,3), the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse model of pancreatic ductal adenocarcinoma that reports sporadic p53 loss of heterozygosity before cancer onset, we find that malignant properties enabled by p53 inactivation are acquired through a predictable pattern of genome evolution. Single-cell sequencing and in situ genotyping of cells from the point of p53 inactivation through progression to frank cancer reveal that this deterministic behaviour involves four sequential phases—Trp53 (encoding mouse p53) loss of heterozygosity, accumulation of deletions, genome doubling, and the emergence of gains and amplifications—each associated with specific histological stages across the premalignant and malignant spectrum. Despite rampant heterogeneity, the deletion events that follow p53 inactivation target functionally relevant pathways that can shape genomic evolution and remain fixed as homogenous events in diverse malignant populations. Thus, loss of p53—the ‘guardian of the genome’—is not merely a gateway to genetic chaos but, rather, can enable deterministic patterns of genome evolution that may point to new strategies for the treatment of TP53-mutant tumours. |
format | Online Article Text |
id | pubmed-9402436 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-94024362022-08-26 Ordered and deterministic cancer genome evolution after p53 loss Baslan, Timour Morris, John P. Zhao, Zhen Reyes, Jose Ho, Yu-Jui Tsanov, Kaloyan M. Bermeo, Jonathan Tian, Sha Zhang, Sean Askan, Gokce Yavas, Aslihan Lecomte, Nicolas Erakky, Amanda Varghese, Anna M. Zhang, Amy Kendall, Jude Ghiban, Elena Chorbadjiev, Lubomir Wu, Jie Dimitrova, Nevenka Chadalavada, Kalyani Nanjangud, Gouri J. Bandlamudi, Chaitanya Gong, Yixiao Donoghue, Mark T. A. Socci, Nicholas D. Krasnitz, Alex Notta, Faiyaz Leach, Steve D. Iacobuzio-Donahue, Christine A. Lowe, Scott W. Nature Article Although p53 inactivation promotes genomic instability(1) and presents a route to malignancy for more than half of all human cancers(2,3), the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse model of pancreatic ductal adenocarcinoma that reports sporadic p53 loss of heterozygosity before cancer onset, we find that malignant properties enabled by p53 inactivation are acquired through a predictable pattern of genome evolution. Single-cell sequencing and in situ genotyping of cells from the point of p53 inactivation through progression to frank cancer reveal that this deterministic behaviour involves four sequential phases—Trp53 (encoding mouse p53) loss of heterozygosity, accumulation of deletions, genome doubling, and the emergence of gains and amplifications—each associated with specific histological stages across the premalignant and malignant spectrum. Despite rampant heterogeneity, the deletion events that follow p53 inactivation target functionally relevant pathways that can shape genomic evolution and remain fixed as homogenous events in diverse malignant populations. Thus, loss of p53—the ‘guardian of the genome’—is not merely a gateway to genetic chaos but, rather, can enable deterministic patterns of genome evolution that may point to new strategies for the treatment of TP53-mutant tumours. Nature Publishing Group UK 2022-08-17 2022 /pmc/articles/PMC9402436/ /pubmed/35978189 http://dx.doi.org/10.1038/s41586-022-05082-5 Text en © The Author(s), under exclusive licence to Springer Nature Limited 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Baslan, Timour Morris, John P. Zhao, Zhen Reyes, Jose Ho, Yu-Jui Tsanov, Kaloyan M. Bermeo, Jonathan Tian, Sha Zhang, Sean Askan, Gokce Yavas, Aslihan Lecomte, Nicolas Erakky, Amanda Varghese, Anna M. Zhang, Amy Kendall, Jude Ghiban, Elena Chorbadjiev, Lubomir Wu, Jie Dimitrova, Nevenka Chadalavada, Kalyani Nanjangud, Gouri J. Bandlamudi, Chaitanya Gong, Yixiao Donoghue, Mark T. A. Socci, Nicholas D. Krasnitz, Alex Notta, Faiyaz Leach, Steve D. Iacobuzio-Donahue, Christine A. Lowe, Scott W. Ordered and deterministic cancer genome evolution after p53 loss |
title | Ordered and deterministic cancer genome evolution after p53 loss |
title_full | Ordered and deterministic cancer genome evolution after p53 loss |
title_fullStr | Ordered and deterministic cancer genome evolution after p53 loss |
title_full_unstemmed | Ordered and deterministic cancer genome evolution after p53 loss |
title_short | Ordered and deterministic cancer genome evolution after p53 loss |
title_sort | ordered and deterministic cancer genome evolution after p53 loss |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402436/ https://www.ncbi.nlm.nih.gov/pubmed/35978189 http://dx.doi.org/10.1038/s41586-022-05082-5 |
work_keys_str_mv | AT baslantimour orderedanddeterministiccancergenomeevolutionafterp53loss AT morrisjohnp orderedanddeterministiccancergenomeevolutionafterp53loss AT zhaozhen orderedanddeterministiccancergenomeevolutionafterp53loss AT reyesjose orderedanddeterministiccancergenomeevolutionafterp53loss AT hoyujui orderedanddeterministiccancergenomeevolutionafterp53loss AT tsanovkaloyanm orderedanddeterministiccancergenomeevolutionafterp53loss AT bermeojonathan orderedanddeterministiccancergenomeevolutionafterp53loss AT tiansha orderedanddeterministiccancergenomeevolutionafterp53loss AT zhangsean orderedanddeterministiccancergenomeevolutionafterp53loss AT askangokce orderedanddeterministiccancergenomeevolutionafterp53loss AT yavasaslihan orderedanddeterministiccancergenomeevolutionafterp53loss AT lecomtenicolas orderedanddeterministiccancergenomeevolutionafterp53loss AT erakkyamanda orderedanddeterministiccancergenomeevolutionafterp53loss AT vargheseannam orderedanddeterministiccancergenomeevolutionafterp53loss AT zhangamy orderedanddeterministiccancergenomeevolutionafterp53loss AT kendalljude orderedanddeterministiccancergenomeevolutionafterp53loss AT ghibanelena orderedanddeterministiccancergenomeevolutionafterp53loss AT chorbadjievlubomir orderedanddeterministiccancergenomeevolutionafterp53loss AT wujie orderedanddeterministiccancergenomeevolutionafterp53loss AT dimitrovanevenka orderedanddeterministiccancergenomeevolutionafterp53loss AT chadalavadakalyani orderedanddeterministiccancergenomeevolutionafterp53loss AT nanjangudgourij orderedanddeterministiccancergenomeevolutionafterp53loss AT bandlamudichaitanya orderedanddeterministiccancergenomeevolutionafterp53loss AT gongyixiao orderedanddeterministiccancergenomeevolutionafterp53loss AT donoghuemarkta orderedanddeterministiccancergenomeevolutionafterp53loss AT soccinicholasd orderedanddeterministiccancergenomeevolutionafterp53loss AT krasnitzalex orderedanddeterministiccancergenomeevolutionafterp53loss AT nottafaiyaz orderedanddeterministiccancergenomeevolutionafterp53loss AT leachsteved orderedanddeterministiccancergenomeevolutionafterp53loss AT iacobuziodonahuechristinea orderedanddeterministiccancergenomeevolutionafterp53loss AT lowescottw orderedanddeterministiccancergenomeevolutionafterp53loss |