Cargando…

Ordered and deterministic cancer genome evolution after p53 loss

Although p53 inactivation promotes genomic instability(1) and presents a route to malignancy for more than half of all human cancers(2,3), the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Baslan, Timour, Morris, John P., Zhao, Zhen, Reyes, Jose, Ho, Yu-Jui, Tsanov, Kaloyan M., Bermeo, Jonathan, Tian, Sha, Zhang, Sean, Askan, Gokce, Yavas, Aslihan, Lecomte, Nicolas, Erakky, Amanda, Varghese, Anna M., Zhang, Amy, Kendall, Jude, Ghiban, Elena, Chorbadjiev, Lubomir, Wu, Jie, Dimitrova, Nevenka, Chadalavada, Kalyani, Nanjangud, Gouri J., Bandlamudi, Chaitanya, Gong, Yixiao, Donoghue, Mark T. A., Socci, Nicholas D., Krasnitz, Alex, Notta, Faiyaz, Leach, Steve D., Iacobuzio-Donahue, Christine A., Lowe, Scott W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402436/
https://www.ncbi.nlm.nih.gov/pubmed/35978189
http://dx.doi.org/10.1038/s41586-022-05082-5
_version_ 1784773176423612416
author Baslan, Timour
Morris, John P.
Zhao, Zhen
Reyes, Jose
Ho, Yu-Jui
Tsanov, Kaloyan M.
Bermeo, Jonathan
Tian, Sha
Zhang, Sean
Askan, Gokce
Yavas, Aslihan
Lecomte, Nicolas
Erakky, Amanda
Varghese, Anna M.
Zhang, Amy
Kendall, Jude
Ghiban, Elena
Chorbadjiev, Lubomir
Wu, Jie
Dimitrova, Nevenka
Chadalavada, Kalyani
Nanjangud, Gouri J.
Bandlamudi, Chaitanya
Gong, Yixiao
Donoghue, Mark T. A.
Socci, Nicholas D.
Krasnitz, Alex
Notta, Faiyaz
Leach, Steve D.
Iacobuzio-Donahue, Christine A.
Lowe, Scott W.
author_facet Baslan, Timour
Morris, John P.
Zhao, Zhen
Reyes, Jose
Ho, Yu-Jui
Tsanov, Kaloyan M.
Bermeo, Jonathan
Tian, Sha
Zhang, Sean
Askan, Gokce
Yavas, Aslihan
Lecomte, Nicolas
Erakky, Amanda
Varghese, Anna M.
Zhang, Amy
Kendall, Jude
Ghiban, Elena
Chorbadjiev, Lubomir
Wu, Jie
Dimitrova, Nevenka
Chadalavada, Kalyani
Nanjangud, Gouri J.
Bandlamudi, Chaitanya
Gong, Yixiao
Donoghue, Mark T. A.
Socci, Nicholas D.
Krasnitz, Alex
Notta, Faiyaz
Leach, Steve D.
Iacobuzio-Donahue, Christine A.
Lowe, Scott W.
author_sort Baslan, Timour
collection PubMed
description Although p53 inactivation promotes genomic instability(1) and presents a route to malignancy for more than half of all human cancers(2,3), the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse model of pancreatic ductal adenocarcinoma that reports sporadic p53 loss of heterozygosity before cancer onset, we find that malignant properties enabled by p53 inactivation are acquired through a predictable pattern of genome evolution. Single-cell sequencing and in situ genotyping of cells from the point of p53 inactivation through progression to frank cancer reveal that this deterministic behaviour involves four sequential phases—Trp53 (encoding mouse p53) loss of heterozygosity, accumulation of deletions, genome doubling, and the emergence of gains and amplifications—each associated with specific histological stages across the premalignant and malignant spectrum. Despite rampant heterogeneity, the deletion events that follow p53 inactivation target functionally relevant pathways that can shape genomic evolution and remain fixed as homogenous events in diverse malignant populations. Thus, loss of p53—the ‘guardian of the genome’—is not merely a gateway to genetic chaos but, rather, can enable deterministic patterns of genome evolution that may point to new strategies for the treatment of TP53-mutant tumours.
format Online
Article
Text
id pubmed-9402436
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-94024362022-08-26 Ordered and deterministic cancer genome evolution after p53 loss Baslan, Timour Morris, John P. Zhao, Zhen Reyes, Jose Ho, Yu-Jui Tsanov, Kaloyan M. Bermeo, Jonathan Tian, Sha Zhang, Sean Askan, Gokce Yavas, Aslihan Lecomte, Nicolas Erakky, Amanda Varghese, Anna M. Zhang, Amy Kendall, Jude Ghiban, Elena Chorbadjiev, Lubomir Wu, Jie Dimitrova, Nevenka Chadalavada, Kalyani Nanjangud, Gouri J. Bandlamudi, Chaitanya Gong, Yixiao Donoghue, Mark T. A. Socci, Nicholas D. Krasnitz, Alex Notta, Faiyaz Leach, Steve D. Iacobuzio-Donahue, Christine A. Lowe, Scott W. Nature Article Although p53 inactivation promotes genomic instability(1) and presents a route to malignancy for more than half of all human cancers(2,3), the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse model of pancreatic ductal adenocarcinoma that reports sporadic p53 loss of heterozygosity before cancer onset, we find that malignant properties enabled by p53 inactivation are acquired through a predictable pattern of genome evolution. Single-cell sequencing and in situ genotyping of cells from the point of p53 inactivation through progression to frank cancer reveal that this deterministic behaviour involves four sequential phases—Trp53 (encoding mouse p53) loss of heterozygosity, accumulation of deletions, genome doubling, and the emergence of gains and amplifications—each associated with specific histological stages across the premalignant and malignant spectrum. Despite rampant heterogeneity, the deletion events that follow p53 inactivation target functionally relevant pathways that can shape genomic evolution and remain fixed as homogenous events in diverse malignant populations. Thus, loss of p53—the ‘guardian of the genome’—is not merely a gateway to genetic chaos but, rather, can enable deterministic patterns of genome evolution that may point to new strategies for the treatment of TP53-mutant tumours. Nature Publishing Group UK 2022-08-17 2022 /pmc/articles/PMC9402436/ /pubmed/35978189 http://dx.doi.org/10.1038/s41586-022-05082-5 Text en © The Author(s), under exclusive licence to Springer Nature Limited 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Baslan, Timour
Morris, John P.
Zhao, Zhen
Reyes, Jose
Ho, Yu-Jui
Tsanov, Kaloyan M.
Bermeo, Jonathan
Tian, Sha
Zhang, Sean
Askan, Gokce
Yavas, Aslihan
Lecomte, Nicolas
Erakky, Amanda
Varghese, Anna M.
Zhang, Amy
Kendall, Jude
Ghiban, Elena
Chorbadjiev, Lubomir
Wu, Jie
Dimitrova, Nevenka
Chadalavada, Kalyani
Nanjangud, Gouri J.
Bandlamudi, Chaitanya
Gong, Yixiao
Donoghue, Mark T. A.
Socci, Nicholas D.
Krasnitz, Alex
Notta, Faiyaz
Leach, Steve D.
Iacobuzio-Donahue, Christine A.
Lowe, Scott W.
Ordered and deterministic cancer genome evolution after p53 loss
title Ordered and deterministic cancer genome evolution after p53 loss
title_full Ordered and deterministic cancer genome evolution after p53 loss
title_fullStr Ordered and deterministic cancer genome evolution after p53 loss
title_full_unstemmed Ordered and deterministic cancer genome evolution after p53 loss
title_short Ordered and deterministic cancer genome evolution after p53 loss
title_sort ordered and deterministic cancer genome evolution after p53 loss
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402436/
https://www.ncbi.nlm.nih.gov/pubmed/35978189
http://dx.doi.org/10.1038/s41586-022-05082-5
work_keys_str_mv AT baslantimour orderedanddeterministiccancergenomeevolutionafterp53loss
AT morrisjohnp orderedanddeterministiccancergenomeevolutionafterp53loss
AT zhaozhen orderedanddeterministiccancergenomeevolutionafterp53loss
AT reyesjose orderedanddeterministiccancergenomeevolutionafterp53loss
AT hoyujui orderedanddeterministiccancergenomeevolutionafterp53loss
AT tsanovkaloyanm orderedanddeterministiccancergenomeevolutionafterp53loss
AT bermeojonathan orderedanddeterministiccancergenomeevolutionafterp53loss
AT tiansha orderedanddeterministiccancergenomeevolutionafterp53loss
AT zhangsean orderedanddeterministiccancergenomeevolutionafterp53loss
AT askangokce orderedanddeterministiccancergenomeevolutionafterp53loss
AT yavasaslihan orderedanddeterministiccancergenomeevolutionafterp53loss
AT lecomtenicolas orderedanddeterministiccancergenomeevolutionafterp53loss
AT erakkyamanda orderedanddeterministiccancergenomeevolutionafterp53loss
AT vargheseannam orderedanddeterministiccancergenomeevolutionafterp53loss
AT zhangamy orderedanddeterministiccancergenomeevolutionafterp53loss
AT kendalljude orderedanddeterministiccancergenomeevolutionafterp53loss
AT ghibanelena orderedanddeterministiccancergenomeevolutionafterp53loss
AT chorbadjievlubomir orderedanddeterministiccancergenomeevolutionafterp53loss
AT wujie orderedanddeterministiccancergenomeevolutionafterp53loss
AT dimitrovanevenka orderedanddeterministiccancergenomeevolutionafterp53loss
AT chadalavadakalyani orderedanddeterministiccancergenomeevolutionafterp53loss
AT nanjangudgourij orderedanddeterministiccancergenomeevolutionafterp53loss
AT bandlamudichaitanya orderedanddeterministiccancergenomeevolutionafterp53loss
AT gongyixiao orderedanddeterministiccancergenomeevolutionafterp53loss
AT donoghuemarkta orderedanddeterministiccancergenomeevolutionafterp53loss
AT soccinicholasd orderedanddeterministiccancergenomeevolutionafterp53loss
AT krasnitzalex orderedanddeterministiccancergenomeevolutionafterp53loss
AT nottafaiyaz orderedanddeterministiccancergenomeevolutionafterp53loss
AT leachsteved orderedanddeterministiccancergenomeevolutionafterp53loss
AT iacobuziodonahuechristinea orderedanddeterministiccancergenomeevolutionafterp53loss
AT lowescottw orderedanddeterministiccancergenomeevolutionafterp53loss