Cargando…

Ensemble deep learning for the prediction of proficiency at a virtual simulator for robot-assisted surgery

BACKGROUND: Artificial intelligence (AI) has the potential to enhance patient safety in surgery, and all its aspects, including education and training, will derive considerable benefit from AI. In the present study, deep-learning models were used to predict the rates of proficiency acquisition in ro...

Descripción completa

Detalles Bibliográficos
Autores principales: Moglia, Andrea, Morelli, Luca, D’Ischia, Roberto, Fatucchi, Lorenzo Maria, Pucci, Valentina, Berchiolli, Raffaella, Ferrari, Mauro, Cuschieri, Alfred
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402513/
https://www.ncbi.nlm.nih.gov/pubmed/35020053
http://dx.doi.org/10.1007/s00464-021-08999-6
Descripción
Sumario:BACKGROUND: Artificial intelligence (AI) has the potential to enhance patient safety in surgery, and all its aspects, including education and training, will derive considerable benefit from AI. In the present study, deep-learning models were used to predict the rates of proficiency acquisition in robot-assisted surgery (RAS), thereby providing surgical programs directors information on the levels of the innate ability of trainees to facilitate the implementation of flexible personalized training. METHODS: 176 medical students, without prior experience with surgical simulators, were trained to reach proficiency in five tasks on a virtual simulator for RAS. Ensemble deep neural networks (DNN) models were developed and compared with other ensemble AI algorithms, i.e., random forests and gradient boosted regression trees (GBRT). RESULTS: DNN models achieved a higher accuracy than random forests and GBRT in predicting time to proficiency, 0.84 vs. 0.70 and 0.77, respectively (Peg board 2), 0.83 vs. 0.79 and 0.78 (Ring walk 2), 0.81 vs 0.81 and 0.80 (Match board 1), 0.79 vs. 0.75 and 0.71 (Ring and rail 2), and 0.87 vs. 0.86 and 0.84 (Thread the rings 2). Ensemble DNN models outperformed random forests and GBRT in predicting number of attempts to proficiency, with an accuracy of 0.87 vs. 0.86 and 0.83, respectively (Peg board 2), 0.89 vs. 0.88 and 0.89 (Ring walk 2), 0.91 vs. 0.89 and 0.89 (Match board 1), 0.89 vs. 0.87 and 0.83 (Ring and rail 2), and 0.96 vs. 0.94 and 0.94 (Thread the rings 2). CONCLUSIONS: Ensemble DNN models can identify at an early stage the acquisition rates of surgical technical proficiency of trainees and identify those struggling to reach the required expected proficiency level. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00464-021-08999-6.