Cargando…
Network phenotypes and their clinical significance in temporal lobe epilepsy using machine learning applications to morphological and functional graph theory metrics
Machine learning analyses were performed on graph theory (GT) metrics extracted from brain functional and morphological data from temporal lobe epilepsy (TLE) patients in order to identify intrinsic network phenotypes and characterize their clinical significance. Participants were 97 TLE and 36 heal...
Autores principales: | Garcia-Ramos, Camille, Nair, Veena, Maganti, Rama, Mathis, Jedidiah, Conant, Lisa L., Prabhakaran, Vivek, Binder, Jeffrey R., Meyerand, Beth, Hermann, Bruce, Struck, Aaron F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402557/ https://www.ncbi.nlm.nih.gov/pubmed/36002603 http://dx.doi.org/10.1038/s41598-022-18495-z |
Ejemplares similares
-
The presence, nature and network characteristics of behavioural phenotypes in temporal lobe epilepsy
por: Struck, Aaron F, et al.
Publicado: (2023) -
Unified Topological Inference for Brain Networks in Temporal Lobe Epilepsy Using the Wasserstein Distance
por: Chung, Moo K., et al.
Publicado: (2023) -
Network, clinical and sociodemographic features of cognitive phenotypes in temporal lobe epilepsy
por: Hermann, Bruce, et al.
Publicado: (2020) -
Brain aging in temporal lobe epilepsy: Chronological, structural, and functional
por: Hwang, Gyujoon, et al.
Publicado: (2020) -
T1−/T2‐weighted ratio reveals no alterations to gray matter myelination in temporal lobe epilepsy
por: Denis, Colin, et al.
Publicado: (2023)