Cargando…
Evaluating the performance of Bayesian and frequentist approaches for longitudinal modeling: application to Alzheimer’s disease
Linear mixed effects (LME) modelling under both frequentist and Bayesian frameworks can be used to study longitudinal trajectories. We studied the performance of both frameworks on different dataset configurations using hippocampal volumes from longitudinal MRI data across groups—healthy controls (H...
Autores principales: | Pérez-Millan, Agnès, Contador, José, Tudela, Raúl, Niñerola-Baizán, Aida, Setoain, Xavier, Lladó, Albert, Sánchez-Valle, Raquel, Sala-Llonch, Roser |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402558/ https://www.ncbi.nlm.nih.gov/pubmed/36002550 http://dx.doi.org/10.1038/s41598-022-18129-4 |
Ejemplares similares
-
Classifying Alzheimer's disease and frontotemporal dementia using machine learning with cross‐sectional and longitudinal magnetic resonance imaging data
por: Pérez‐Millan, Agnès, et al.
Publicado: (2023) -
Longitudinal brain atrophy and CSF biomarkers in early-onset Alzheimer’s disease
por: Contador, José, et al.
Publicado: (2021) -
Epileptogenic Zone Localization With (18)FDG PET Using a New Dynamic Parametric Analysis
por: Mayoral, Maria, et al.
Publicado: (2019) -
Resting State Networks in the TgF344-AD Rat Model of Alzheimer’s Disease Are Altered From Early Stages
por: Tudela, Raúl, et al.
Publicado: (2019) -
The
APOE4
effect: structural brain differences in Alzheimer's disease according to the age at symptom onset
por: Forno, Gonzalo, et al.
Publicado: (2022)