Cargando…
Rapidly predicting Kohn–Sham total energy using data-centric AI
Predicting material properties by solving the Kohn-Sham (KS) equation, which is the basis of modern computational approaches to electronic structures, has provided significant improvements in materials sciences. Despite its contributions, both DFT and DFTB calculations are limited by the number of e...
Autores principales: | Kurban, Hasan, Kurban, Mustafa, Dalkilic, Mehmet M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402589/ https://www.ncbi.nlm.nih.gov/pubmed/36002504 http://dx.doi.org/10.1038/s41598-022-18366-7 |
Ejemplares similares
-
ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data
por: Malec, Marcin, et al.
Publicado: (2022) -
Bypassing the Kohn-Sham equations with machine learning
por: Brockherde, Felix, et al.
Publicado: (2017) -
Data on Machine Learning regenerated Lithium-ion battery impedance
por: Temiz, Selcuk, et al.
Publicado: (2022) -
Nature of the Ru−NO Coordination Bond: Kohn–Sham Molecular Orbital and Energy Decomposition Analysis
por: Orenha, Renato P., et al.
Publicado: (2017) -
From Kohn–Sham to Many-Electron Energies via
Step Structures in the Exchange-Correlation Potential
por: Kraisler, Eli, et al.
Publicado: (2021)