Cargando…
Case report: Biochemical and clinical phenotypes caused by cysteine substitutions in the epidermal growth factor-like domains of fibrillin-1
Marfan syndrome, an autosomal dominant disorder of connective tissue, is primarily caused by mutations in the fibrillin-1 (FBN1) gene, which encodes the protein fibrillin-1. The protein is composed of epidermal growth factor-like (EGF-like) domains, transforming growth factor beta-binding protein-li...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402891/ https://www.ncbi.nlm.nih.gov/pubmed/36035136 http://dx.doi.org/10.3389/fgene.2022.928683 |
_version_ | 1784773244556935168 |
---|---|
author | Liu, Xin Liu, Kaiqing Nie, Danyao Zhang, Jing Zhang, Liyun Liu, Xinhua Wang, Jiantao |
author_facet | Liu, Xin Liu, Kaiqing Nie, Danyao Zhang, Jing Zhang, Liyun Liu, Xinhua Wang, Jiantao |
author_sort | Liu, Xin |
collection | PubMed |
description | Marfan syndrome, an autosomal dominant disorder of connective tissue, is primarily caused by mutations in the fibrillin-1 (FBN1) gene, which encodes the protein fibrillin-1. The protein is composed of epidermal growth factor-like (EGF-like) domains, transforming growth factor beta-binding protein-like (TB) domains, and hybrid (Hyb) domains and is an important component of elastin-related microfibrils in elastic fiber tissue. In this study, we report a cysteine to tyrosine substitution in two different domains of fibrillin-1, both of which cause Marfan syndrome with ocular abnormalities, in two families. Using protease degradation and liquid chromatography-tandem mass spectrometry analyses, we explored the different effects of substitution of cysteine by tyrosine in an EGF-like and a calcium-binding (cb) EGF-like domain on protein stability. The results showed that cysteine mutations in the EGF domain are more likely to result in altered proteolytic sensitivity and thermostability than those in the cbEGF domain. Furthermore, cysteine mutations can lead to new enzymatic sites exposure or hidden canonical cleavage sites. These results indicate the differential clinical phenotypes and molecular pathogenesis of Marfan syndrome caused by cysteine mutations in different fibrillin-1 domains. These results strongly suggest that failure to form disulfide bonds and abnormal proteolysis of fibrillin-1 caused by cysteine mutations may be an important factor underlying the pathogenesis of diseases caused by fibrillin-1 mutations, such as Marfan syndrome. |
format | Online Article Text |
id | pubmed-9402891 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94028912022-08-26 Case report: Biochemical and clinical phenotypes caused by cysteine substitutions in the epidermal growth factor-like domains of fibrillin-1 Liu, Xin Liu, Kaiqing Nie, Danyao Zhang, Jing Zhang, Liyun Liu, Xinhua Wang, Jiantao Front Genet Genetics Marfan syndrome, an autosomal dominant disorder of connective tissue, is primarily caused by mutations in the fibrillin-1 (FBN1) gene, which encodes the protein fibrillin-1. The protein is composed of epidermal growth factor-like (EGF-like) domains, transforming growth factor beta-binding protein-like (TB) domains, and hybrid (Hyb) domains and is an important component of elastin-related microfibrils in elastic fiber tissue. In this study, we report a cysteine to tyrosine substitution in two different domains of fibrillin-1, both of which cause Marfan syndrome with ocular abnormalities, in two families. Using protease degradation and liquid chromatography-tandem mass spectrometry analyses, we explored the different effects of substitution of cysteine by tyrosine in an EGF-like and a calcium-binding (cb) EGF-like domain on protein stability. The results showed that cysteine mutations in the EGF domain are more likely to result in altered proteolytic sensitivity and thermostability than those in the cbEGF domain. Furthermore, cysteine mutations can lead to new enzymatic sites exposure or hidden canonical cleavage sites. These results indicate the differential clinical phenotypes and molecular pathogenesis of Marfan syndrome caused by cysteine mutations in different fibrillin-1 domains. These results strongly suggest that failure to form disulfide bonds and abnormal proteolysis of fibrillin-1 caused by cysteine mutations may be an important factor underlying the pathogenesis of diseases caused by fibrillin-1 mutations, such as Marfan syndrome. Frontiers Media S.A. 2022-08-11 /pmc/articles/PMC9402891/ /pubmed/36035136 http://dx.doi.org/10.3389/fgene.2022.928683 Text en Copyright © 2022 Liu, Liu, Nie, Zhang, Zhang, Liu and Wang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Liu, Xin Liu, Kaiqing Nie, Danyao Zhang, Jing Zhang, Liyun Liu, Xinhua Wang, Jiantao Case report: Biochemical and clinical phenotypes caused by cysteine substitutions in the epidermal growth factor-like domains of fibrillin-1 |
title | Case report: Biochemical and clinical phenotypes caused by cysteine substitutions in the epidermal growth factor-like domains of fibrillin-1 |
title_full | Case report: Biochemical and clinical phenotypes caused by cysteine substitutions in the epidermal growth factor-like domains of fibrillin-1 |
title_fullStr | Case report: Biochemical and clinical phenotypes caused by cysteine substitutions in the epidermal growth factor-like domains of fibrillin-1 |
title_full_unstemmed | Case report: Biochemical and clinical phenotypes caused by cysteine substitutions in the epidermal growth factor-like domains of fibrillin-1 |
title_short | Case report: Biochemical and clinical phenotypes caused by cysteine substitutions in the epidermal growth factor-like domains of fibrillin-1 |
title_sort | case report: biochemical and clinical phenotypes caused by cysteine substitutions in the epidermal growth factor-like domains of fibrillin-1 |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402891/ https://www.ncbi.nlm.nih.gov/pubmed/36035136 http://dx.doi.org/10.3389/fgene.2022.928683 |
work_keys_str_mv | AT liuxin casereportbiochemicalandclinicalphenotypescausedbycysteinesubstitutionsintheepidermalgrowthfactorlikedomainsoffibrillin1 AT liukaiqing casereportbiochemicalandclinicalphenotypescausedbycysteinesubstitutionsintheepidermalgrowthfactorlikedomainsoffibrillin1 AT niedanyao casereportbiochemicalandclinicalphenotypescausedbycysteinesubstitutionsintheepidermalgrowthfactorlikedomainsoffibrillin1 AT zhangjing casereportbiochemicalandclinicalphenotypescausedbycysteinesubstitutionsintheepidermalgrowthfactorlikedomainsoffibrillin1 AT zhangliyun casereportbiochemicalandclinicalphenotypescausedbycysteinesubstitutionsintheepidermalgrowthfactorlikedomainsoffibrillin1 AT liuxinhua casereportbiochemicalandclinicalphenotypescausedbycysteinesubstitutionsintheepidermalgrowthfactorlikedomainsoffibrillin1 AT wangjiantao casereportbiochemicalandclinicalphenotypescausedbycysteinesubstitutionsintheepidermalgrowthfactorlikedomainsoffibrillin1 |