Cargando…

The effect of different poly fibers separator-modified materials on blocking polysulfides for high performance Li-S batteries

Herein, we reported that KOH impregnation can generate a large number of porous structures with fruitful nitrogen self-doped groups during the carbonized process for poly (p-phenylene terephthalamide) fiber and poly (p-phenylene benzobisoxazole) fiber (denoted as PPTA and PBO, respectively). The int...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Ling, Sun, Zhaoxia, Sun, Guanghang, Zhang, Xiting, Dan, Meng, Long, Jin, Hu, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403007/
https://www.ncbi.nlm.nih.gov/pubmed/36034673
http://dx.doi.org/10.3389/fchem.2022.931201
Descripción
Sumario:Herein, we reported that KOH impregnation can generate a large number of porous structures with fruitful nitrogen self-doped groups during the carbonized process for poly (p-phenylene terephthalamide) fiber and poly (p-phenylene benzobisoxazole) fiber (denoted as PPTA and PBO, respectively). The intrinsical insulation, volume change, and shuttle effect of polysulfides then can be more significantly improved for the PBO-coated separator than the PPTA case. The discharge capacity primary achieves 1,322 mA h/g, which retains 827 mA h/g even after 200 cycles at 0.2 C for the cell with PBO-coated separator. The reversible specific discharge capacity maintains 841 mA h/g with a Coulomb efficiency of 99.7% at 5 C. The nitrogen self-doped nanocarbon particles are etched by KOH with the simple one-step preparation, which has promising application as Li-S battery cathode.