Cargando…
BrcaSeg: A Deep Learning Approach for Tissue Quantification and Genomic Correlations of Histopathological Images
Epithelial and stromal tissues are components of the tumor microenvironment and play a major role in tumor initiation and progression. Distinguishing stroma from epithelial tissues is critically important for spatial characterization of the tumor microenvironment. Here, we propose BrcaSeg, an image...
Autores principales: | Lu, Zixiao, Zhan, Xiaohui, Wu, Yi, Cheng, Jun, Shao, Wei, Ni, Dong, Han, Zhi, Zhang, Jie, Feng, Qianjin, Huang, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403022/ https://www.ncbi.nlm.nih.gov/pubmed/34280546 http://dx.doi.org/10.1016/j.gpb.2020.06.026 |
Ejemplares similares
-
CytoSeg 2.0: automated extraction of actin filaments
por: Nowak, Jacqueline, et al.
Publicado: (2020) -
RNAget: an API to securely retrieve RNA quantifications
por: Upchurch, Sean, et al.
Publicado: (2023) -
Deep-Learning–Based Characterization of Tumor-Infiltrating Lymphocytes in Breast Cancers From Histopathology Images and Multiomics Data
por: Lu, Zixiao, et al.
Publicado: (2020) -
MRI adipose tissue segmentation and quantification in R (RAdipoSeg)
por: Haugen, Christine, et al.
Publicado: (2022) -
QuasR: quantification and annotation of short reads in R
por: Gaidatzis, Dimos, et al.
Publicado: (2015)