Cargando…
Utility of pre-treatment FDG PET/CT–derived machine learning models for outcome prediction in classical Hodgkin lymphoma
OBJECTIVES: Relapse occurs in ~20% of patients with classical Hodgkin lymphoma (cHL) despite treatment adaption based on 2-deoxy-2-[(18)F]fluoro-d-glucose positron emission tomography/computed tomography response. The objective was to evaluate pre-treatment FDG PET/CT–derived machine learning (ML) m...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403224/ https://www.ncbi.nlm.nih.gov/pubmed/36006428 http://dx.doi.org/10.1007/s00330-022-09039-0 |
Sumario: | OBJECTIVES: Relapse occurs in ~20% of patients with classical Hodgkin lymphoma (cHL) despite treatment adaption based on 2-deoxy-2-[(18)F]fluoro-d-glucose positron emission tomography/computed tomography response. The objective was to evaluate pre-treatment FDG PET/CT–derived machine learning (ML) models for predicting outcome in patients with cHL. METHODS: All cHL patients undergoing pre-treatment PET/CT at our institution between 2008 and 2018 were retrospectively identified. A 1.5 × mean liver standardised uptake value (SUV) and a fixed 4.0 SUV threshold were used to segment PET/CT data. Feature extraction was performed using PyRadiomics with ComBat harmonisation. Training (80%) and test (20%) cohorts stratified around 2-year event-free survival (EFS), age, sex, ethnicity and disease stage were defined. Seven ML models were trained and hyperparameters tuned using stratified 5-fold cross-validation. Area under the curve (AUC) from receiver operator characteristic analysis was used to assess performance. RESULTS: A total of 289 patients (153 males), median age 36 (range 16–88 years), were included. There was no significant difference between training (n = 231) and test cohorts (n = 58) (p value > 0.05). A ridge regression model using a 1.5 × mean liver SUV segmentation had the highest performance, with mean training, validation and test AUCs of 0.82 ± 0.002, 0.79 ± 0.01 and 0.81 ± 0.12. However, there was no significant difference between a logistic model derived from metabolic tumour volume and clinical features or the highest performing radiomic model. CONCLUSIONS: Outcome prediction using pre-treatment FDG PET/CT–derived ML models is feasible in cHL patients. Further work is needed to determine optimum predictive thresholds for clinical use. KEY POINTS: • A fixed threshold segmentation method led to more robust radiomic features. • A radiomic-based model for predicting 2-year event-free survival in classical Hodgkin lymphoma patients is feasible. • A predictive model based on ridge regression was the best performing model on our dataset. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00330-022-09039-0. |
---|