Cargando…
Utility of pre-treatment FDG PET/CT–derived machine learning models for outcome prediction in classical Hodgkin lymphoma
OBJECTIVES: Relapse occurs in ~20% of patients with classical Hodgkin lymphoma (cHL) despite treatment adaption based on 2-deoxy-2-[(18)F]fluoro-d-glucose positron emission tomography/computed tomography response. The objective was to evaluate pre-treatment FDG PET/CT–derived machine learning (ML) m...
Autores principales: | Frood, Russell, Clark, Matt, Burton, Cathy, Tsoumpas, Charalampos, Frangi, Alejandro F., Gleeson, Fergus, Patel, Chirag, Scarsbrook, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403224/ https://www.ncbi.nlm.nih.gov/pubmed/36006428 http://dx.doi.org/10.1007/s00330-022-09039-0 |
Ejemplares similares
-
Discovery of Pre-Treatment FDG PET/CT-Derived Radiomics-Based Models for Predicting Outcome in Diffuse Large B-Cell Lymphoma
por: Frood, Russell, et al.
Publicado: (2022) -
Baseline PET/CT imaging parameters for prediction of treatment outcome in Hodgkin and diffuse large B cell lymphoma: a systematic review
por: Frood, R., et al.
Publicado: (2021) -
[(18)F]FDG-PET/CT radiomics for the identification of genetic clusters in pheochromocytomas and paragangliomas
por: Noortman, Wyanne A., et al.
Publicado: (2022) -
FDG PET/CT radiomics as a tool to differentiate between reactive axillary lymphadenopathy following COVID-19 vaccination and metastatic breast cancer axillary lymphadenopathy: a pilot study
por: Eifer, Michal, et al.
Publicado: (2022) -
Implementation of artificial intelligence in thoracic imaging—a what, how, and why guide from the European Society of Thoracic Imaging (ESTI)
por: Gleeson, Fergus, et al.
Publicado: (2023)