Cargando…
Supervised dimensionality reduction for exploration of single-cell data by HSS-LDA
Single-cell technologies generate large, high-dimensional datasets encompassing a diversity of omics. Dimensionality reduction captures the structure and heterogeneity of the original dataset, creating low-dimensional visualizations that contribute to the human understanding of data. Existing algori...
Autores principales: | Amouzgar, Meelad, Glass, David R., Baskar, Reema, Averbukh, Inna, Kimmey, Samuel C., Tsai, Albert G., Hartmann, Felix J., Bendall, Sean C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403402/ https://www.ncbi.nlm.nih.gov/pubmed/36033591 http://dx.doi.org/10.1016/j.patter.2022.100536 |
Ejemplares similares
-
Parallel analysis of tri-molecular biosynthesis with cell identity and function in single cells
por: Kimmey, Samuel C., et al.
Publicado: (2019) -
Data science through the lens of systems immunology
por: Glass, David R., et al.
Publicado: (2022) -
High-dimensional profiling of pediatric immune responses to solid organ transplantation
por: Rao, Mahil, et al.
Publicado: (2023) -
TRAIL-induced variation of cell signaling states provides nonheritable resistance to apoptosis
por: Baskar, Reema, et al.
Publicado: (2019) -
Tool Wear and Surface Evaluation in Drilling Fly Ash Geopolymer Using HSS, HSS-Co, and HSS-TiN Cutting Tools
por: Ghazali, Mohd Fathullah, et al.
Publicado: (2021)