Cargando…
Automated extraction of Camellia oleifera crown using unmanned aerial vehicle visible images and the ResU-Net deep learning model
As one of the four most important woody oil-tree in the world, Camellia oleifera has significant economic value. Rapid and accurate acquisition of C. oleifera tree-crown information is essential for enhancing the effectiveness of C. oleifera tree management and accurately predicting fruit yield. Thi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403518/ https://www.ncbi.nlm.nih.gov/pubmed/36035664 http://dx.doi.org/10.3389/fpls.2022.958940 |
_version_ | 1784773395857014784 |
---|---|
author | Ji, Yu Yan, Enping Yin, Xianming Song, Yabin Wei, Wei Mo, Dengkui |
author_facet | Ji, Yu Yan, Enping Yin, Xianming Song, Yabin Wei, Wei Mo, Dengkui |
author_sort | Ji, Yu |
collection | PubMed |
description | As one of the four most important woody oil-tree in the world, Camellia oleifera has significant economic value. Rapid and accurate acquisition of C. oleifera tree-crown information is essential for enhancing the effectiveness of C. oleifera tree management and accurately predicting fruit yield. This study is the first of its kind to explore training the ResU-Net model with UAV (unmanned aerial vehicle) images containing elevation information for automatically detecting tree crowns and estimating crown width (CW) and crown projection area (CPA) to rapidly extract tree-crown information. A Phantom 4 RTK UAV was utilized to acquire high-resolution images of the research site. Using UAV imagery, the tree crown was manually delineated. ResU-Net model’s training dataset was compiled using six distinct band combinations of UAV imagery containing elevation information [RGB (red, green, and blue), RGB-CHM (canopy height model), RGB-DSM (digital surface model), EXG (excess green index), EXG-CHM, and EXG-DSM]. As a test set, images with UAV-based CW and CPA reference values were used to assess model performance. With the RGB-CHM combination, ResU-Net achieved superior performance. Individual tree-crown detection was remarkably accurate (Precision = 88.73%, Recall = 80.43%, and F1score = 84.68%). The estimated CW (R(2) = 0.9271, RMSE = 0.1282 m, rRMSE = 6.47%) and CPA (R(2) = 0.9498, RMSE = 0.2675 m(2), rRMSE = 9.39%) values were highly correlated with the UAV-based reference values. The results demonstrate that the input image containing a CHM achieves more accurate crown delineation than an image containing a DSM. The accuracy and efficacy of ResU-Net in extracting C. oleifera tree-crown information have great potential for application in non-wood forests precision management. |
format | Online Article Text |
id | pubmed-9403518 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94035182022-08-26 Automated extraction of Camellia oleifera crown using unmanned aerial vehicle visible images and the ResU-Net deep learning model Ji, Yu Yan, Enping Yin, Xianming Song, Yabin Wei, Wei Mo, Dengkui Front Plant Sci Plant Science As one of the four most important woody oil-tree in the world, Camellia oleifera has significant economic value. Rapid and accurate acquisition of C. oleifera tree-crown information is essential for enhancing the effectiveness of C. oleifera tree management and accurately predicting fruit yield. This study is the first of its kind to explore training the ResU-Net model with UAV (unmanned aerial vehicle) images containing elevation information for automatically detecting tree crowns and estimating crown width (CW) and crown projection area (CPA) to rapidly extract tree-crown information. A Phantom 4 RTK UAV was utilized to acquire high-resolution images of the research site. Using UAV imagery, the tree crown was manually delineated. ResU-Net model’s training dataset was compiled using six distinct band combinations of UAV imagery containing elevation information [RGB (red, green, and blue), RGB-CHM (canopy height model), RGB-DSM (digital surface model), EXG (excess green index), EXG-CHM, and EXG-DSM]. As a test set, images with UAV-based CW and CPA reference values were used to assess model performance. With the RGB-CHM combination, ResU-Net achieved superior performance. Individual tree-crown detection was remarkably accurate (Precision = 88.73%, Recall = 80.43%, and F1score = 84.68%). The estimated CW (R(2) = 0.9271, RMSE = 0.1282 m, rRMSE = 6.47%) and CPA (R(2) = 0.9498, RMSE = 0.2675 m(2), rRMSE = 9.39%) values were highly correlated with the UAV-based reference values. The results demonstrate that the input image containing a CHM achieves more accurate crown delineation than an image containing a DSM. The accuracy and efficacy of ResU-Net in extracting C. oleifera tree-crown information have great potential for application in non-wood forests precision management. Frontiers Media S.A. 2022-08-11 /pmc/articles/PMC9403518/ /pubmed/36035664 http://dx.doi.org/10.3389/fpls.2022.958940 Text en Copyright © 2022 Ji, Yan, Yin, Song, Wei and Mo. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Ji, Yu Yan, Enping Yin, Xianming Song, Yabin Wei, Wei Mo, Dengkui Automated extraction of Camellia oleifera crown using unmanned aerial vehicle visible images and the ResU-Net deep learning model |
title | Automated extraction of Camellia oleifera crown using unmanned aerial vehicle visible images and the ResU-Net deep learning model |
title_full | Automated extraction of Camellia oleifera crown using unmanned aerial vehicle visible images and the ResU-Net deep learning model |
title_fullStr | Automated extraction of Camellia oleifera crown using unmanned aerial vehicle visible images and the ResU-Net deep learning model |
title_full_unstemmed | Automated extraction of Camellia oleifera crown using unmanned aerial vehicle visible images and the ResU-Net deep learning model |
title_short | Automated extraction of Camellia oleifera crown using unmanned aerial vehicle visible images and the ResU-Net deep learning model |
title_sort | automated extraction of camellia oleifera crown using unmanned aerial vehicle visible images and the resu-net deep learning model |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403518/ https://www.ncbi.nlm.nih.gov/pubmed/36035664 http://dx.doi.org/10.3389/fpls.2022.958940 |
work_keys_str_mv | AT jiyu automatedextractionofcamelliaoleiferacrownusingunmannedaerialvehiclevisibleimagesandtheresunetdeeplearningmodel AT yanenping automatedextractionofcamelliaoleiferacrownusingunmannedaerialvehiclevisibleimagesandtheresunetdeeplearningmodel AT yinxianming automatedextractionofcamelliaoleiferacrownusingunmannedaerialvehiclevisibleimagesandtheresunetdeeplearningmodel AT songyabin automatedextractionofcamelliaoleiferacrownusingunmannedaerialvehiclevisibleimagesandtheresunetdeeplearningmodel AT weiwei automatedextractionofcamelliaoleiferacrownusingunmannedaerialvehiclevisibleimagesandtheresunetdeeplearningmodel AT modengkui automatedextractionofcamelliaoleiferacrownusingunmannedaerialvehiclevisibleimagesandtheresunetdeeplearningmodel |