Cargando…
Development of a semi-automated volatile organic compounds (VOCs) sampling system for field asymmetric ion mobility spectrometry (FAIMS) analysis
In recent years, applications of volatile organic compounds (VOCs) sensing technologies such as field asymmetric-waveform ion-mobility spectrometry (FAIMS) system in agriculture have accelerated. FAIMS system for VOCs sensing is attractive as it offers high sensitivity, selectivity, real-time monito...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403554/ https://www.ncbi.nlm.nih.gov/pubmed/36033547 http://dx.doi.org/10.1016/j.ohx.2022.e00344 |
Sumario: | In recent years, applications of volatile organic compounds (VOCs) sensing technologies such as field asymmetric-waveform ion-mobility spectrometry (FAIMS) system in agriculture have accelerated. FAIMS system for VOCs sensing is attractive as it offers high sensitivity, selectivity, real-time monitoring, and portability. However, the development of a robust instrumentation system is needed for precise sampling, high accumulation of VOCs, and careful handling of samples. In this study, we developed a simple semi-automated VOC sampling (SAVS) system using a Raspberry Pi microcontroller, flowmeters, electromechanical solenoid, and cellphone-based app to control cleaning and sampling loops. The system was compared with customized headspace sampling apparatus (CHSA) and validated with a biomarker (acetone) identified to be associated with potato rot development during postharvest storage. The standard error within ion current data across different compensation voltage was lower using the SAVS system than the CHSA. In addition, the maximum peak values across scans displayed a high coefficient of variation using the CHSA (16.23%) than the SAVS system (4.51%). Future work will involve improving system efficiency by adapting multiple sample units, system miniaturization, and automating the flowmeter operation. Such automation is critical to characterize VOCs precisely and automatically across several samples for multiple applications such as pathogen detection, evaluation of crop responses, etc. |
---|