Cargando…
Dilated transformer: residual axial attention for breast ultrasound image segmentation
BACKGROUND: The segmentation of breast ultrasound (US) images has been a challenging task, mainly due to limited data and the inherent image characteristics involved, such as low contrast and speckle noise. Although convolutional neural network-based (CNN-based) methods have made significant progres...
Autores principales: | Shen, Xiaoyan, Wang, Liangyu, Zhao, Yu, Liu, Ruibo, Qian, Wei, Ma, He |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403584/ https://www.ncbi.nlm.nih.gov/pubmed/36060605 http://dx.doi.org/10.21037/qims-22-33 |
Ejemplares similares
-
Lesion segmentation in breast ultrasound images using the optimized marked watershed method
por: Shen, Xiaoyan, et al.
Publicado: (2021) -
Transformer and group parallel axial attention co-encoder for medical image segmentation
por: Li, Chaoqun, et al.
Publicado: (2022) -
Multi-level dilated residual network for biomedical image segmentation
por: Gudhe, Naga Raju, et al.
Publicado: (2021) -
Dilated residual FPN-based segmentation for mouse retinal images
por: Che, Zhihao, et al.
Publicado: (2023) -
WBC Image Segmentation Based on Residual Networks and Attentional Mechanisms
por: Wu, Jiangping, et al.
Publicado: (2022)