Cargando…

High‐Frequency Operation of Vertical Organic Field‐Effect Transistors

The high‐frequency and low‐voltage operation of organic thin‐film transistors (OTFTs) is a key requirement for the commercial success of flexible electronics. Significant progress has been achieved in this regard by several research groups highlighting the potential of OTFTs to operate at several te...

Descripción completa

Detalles Bibliográficos
Autores principales: Höppner, Marco, Kheradmand‐Boroujeni, Bahman, Vahland, Jörn, Sawatzki, Michael Franz, Kneppe, David, Ellinger, Frank, Kleemann, Hans
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403633/
https://www.ncbi.nlm.nih.gov/pubmed/35754312
http://dx.doi.org/10.1002/advs.202201660
Descripción
Sumario:The high‐frequency and low‐voltage operation of organic thin‐film transistors (OTFTs) is a key requirement for the commercial success of flexible electronics. Significant progress has been achieved in this regard by several research groups highlighting the potential of OTFTs to operate at several tens or even above 100 MHz. However, technology maturity, including scalability, integrability, and device reliability, is another crucial point for the semiconductor industry to bring OTFT‐based flexible electronics into mass production. These requirements are often not met by high‐frequency OTFTs reported in the literature as unconventional processes, such as shadow‐mask patterning or alignment with unrealistic tolerances for production, are used. Here, ultra‐short channel vertical organic field‐effect transistors (VOFETs) with a unity current gain cut‐off frequency (f (T)) up to 43.2 MHz (or 4.4 MHz V(−1)) operating below 10 V are shown. Using state‐of‐the‐art manufacturing techniques such as photolithography with reliable fabrication procedures, the integration of such devices down to the size of only 12 × 6 µm2 is shown, which is important for the adaption of this technology in high‐density circuits (e.g., display driving). The intrinsic channel transconductance is analyzed and demonstrates that the frequencies up to 430 MHz can be reached if the parasitic electrode overlap is minimized.