Cargando…

两性离子双功能化超亲水金属有机框架纳米复合材料的制备及其用于糖肽的选择性富集

Protein glycosylation is a ubiquitous and important biological process involved in various molecular functions and biological pathways. It also yields important biomarkers for clinical diagnoses. However, glycopeptide analysis is challenging due to low abundance, low ionization efficiency, and glyca...

Descripción completa

Detalles Bibliográficos
Autores principales: LI, Dapeng, XIE, Guangshan, XIE, Peisi, ZHU, Lin, CAI, Zongwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Editorial board of Chinese Journal of Chromatography 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403811/
https://www.ncbi.nlm.nih.gov/pubmed/34227302
http://dx.doi.org/10.3724/SP.J.1123.2020.11006
Descripción
Sumario:Protein glycosylation is a ubiquitous and important biological process involved in various molecular functions and biological pathways. It also yields important biomarkers for clinical diagnoses. However, glycopeptide analysis is challenging due to low abundance, low ionization efficiency, and glycan heterogeneity. In the present study, a method based on hydrophilic interaction liquid chromatography (HILIC) was developed for the selective enrichment of glycopeptides using a novel metal-organic framework (MOF) nanocomposite (AuGC/ZIF-8). Dual functionalization with glutathione and cysteine has resulted in an ultra-hydrophilic MOF, with synergistic effects and lower steric hindrance, providing more affinity sites for the glycopeptide enrichment. Horseradish peroxidase (HRP) was used as a model glycoprotein, and AuGC/ZIF-8 was used to enrich glycopeptides prior to analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). AuGC/ZIF-8 displayed outstanding performance at enriching HRP glycopeptides, with high enrichment capacity (250 μg/mg), high selectivity in mixtures containing bovine serum albumin (BSA) (HRP-BSA (1∶200, mass ratio)), and high sensitivity at very low content (0.3 ng/μL). Thus this MOF holds promise for in-depth, comprehensive glycoproteomic and related analysis.