Cargando…
Physiological changes and rate of resistance of Acrosiphonia arcta (Dillwyn) Gain upon exposure to diesel fuel
The changes in the morpho-physiological state of green alga Acrosiphonia arcta upon exposure to diesel fuel (DF) at concentrations of 20; 100; 1,000; 2,000; 3,000 of maximum permissible concentrations (MPC) were studied. The main physiological stress markers, such as enzymes of the antioxidant syste...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404261/ https://www.ncbi.nlm.nih.gov/pubmed/36033327 http://dx.doi.org/10.1016/j.heliyon.2022.e10177 |
Sumario: | The changes in the morpho-physiological state of green alga Acrosiphonia arcta upon exposure to diesel fuel (DF) at concentrations of 20; 100; 1,000; 2,000; 3,000 of maximum permissible concentrations (MPC) were studied. The main physiological stress markers, such as enzymes of the antioxidant system (AOS), non-enzymatic antioxidants (carotenoids) and free amino acids (as components of plant metabolome) were measured. In general, all concentrations of the petroleum product used changed the activity of the antioxidant system, changed the intensity of physiological processes (photosynthesis, free amino acid synthesis) and also affected the structure of microbiomes inhabiting the surface of algae. It was shown that the concentration of DF within 1 mg/l (20 MPC) was not lethal as plants were able to maintain physiological activity and the observed changes were reversible. Although DF exposure caused decreases in superoxide dismutase (SOD) activity, proline concentration and photosynthetic rate, increases in catalase activity and pigment concentration were observed. After the effects of stress disappeared, most physiological parameters were restored, except for carotenoid content. Higher DF concentrations (100 MPC and higher) caused injury to cell structures and damage to the pigment apparatus. The restoration of functions after the termination of exposure to stress was not achieved. Epiphytic bacterial communities actively responded both to the introduction of a toxicant and to the changing physiological parameters of algae by the change in the numbers of cultured heterotrophic bacteria. The results of this study showed that the concentration of petroleum products in the water decreased to values not exceeding MPC in the presence of algae in the environment. |
---|