Cargando…
Physico-chemical characterization studies of collagen labelled with Ru(II) polypyridyl complex
The rich luminescence behaviour exerted by transition metal complexes has found significant role in the development of biomolecular and cellular probes. The conjugation of fluorophore to a protein has its own advantage over the label-free system due to its high sensitivity. While numerous proteins h...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404281/ https://www.ncbi.nlm.nih.gov/pubmed/36033328 http://dx.doi.org/10.1016/j.heliyon.2022.e10173 |
Sumario: | The rich luminescence behaviour exerted by transition metal complexes has found significant role in the development of biomolecular and cellular probes. The conjugation of fluorophore to a protein has its own advantage over the label-free system due to its high sensitivity. While numerous proteins have been labelled with either organic or inorganic fluorophores, the conjugation of luminescent transition metal complexes with collagen has not yet been attempted. Here, in this study, the conjugation of a Ru(II) polypyridyl complex with collagen was carried out and its physico-chemical characterization was studied. The conjugation of Ru(II) to collagen was characterized by UV-Visible, fluorescence and ATR-FT-IR spectroscopy. The conjugation of Ru(II) did not alter the triple helical structure of the collagen as evidenced from CD spectral data. The luminescence behaviour of the Ru-tagged collagen was found to be similar to that of the commercially available fluorescein isothiocyanate (FITC) tagged collagen with increase in luminescence upon addition of collagenase. Gel-based collagenase assay showed that the digestion of collagen can be vizualized using UV light due to intrinsic fluorophore tag without carrying out the staining-destaining processes. Energy dispersive X-Ray analysis (EDAX) confirms the presence of Ru in Ru-collagen fibrils. To the best of our knowledge, this is the first report on the conjugation of a Ru(II) complex with the fibrous protein collagen that exhibits similar property as of FITC-collagen and can be used as an alternative. |
---|