Cargando…
Multi-scale modeling of folic acid-functionalized TiO(2) nanoparticles for active targeting of tumor cells
Strategies based on the active targeting of tumor cells are emerging as smart and efficient nanomedical procedures. Folic acid (FA) is a vitamin and a well-established tumor targeting agent because of its strong affinity for the folate receptor (FR), which is an overexpressed protein on the cell mem...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404434/ https://www.ncbi.nlm.nih.gov/pubmed/35959762 http://dx.doi.org/10.1039/d2nr02603a |
_version_ | 1784773638070730752 |
---|---|
author | Donadoni, Edoardo Siani, Paulo Frigerio, Giulia Di Valentin, Cristiana |
author_facet | Donadoni, Edoardo Siani, Paulo Frigerio, Giulia Di Valentin, Cristiana |
author_sort | Donadoni, Edoardo |
collection | PubMed |
description | Strategies based on the active targeting of tumor cells are emerging as smart and efficient nanomedical procedures. Folic acid (FA) is a vitamin and a well-established tumor targeting agent because of its strong affinity for the folate receptor (FR), which is an overexpressed protein on the cell membranes of the tumor cells. FA can be successfully anchored to several nanocarriers, including inorganic nanoparticles (NPs) based on transition metal oxides. Among them, TiO(2) is extremely interesting because of its excellent photoabsorption and photocatalytic properties, which can be exploited in photodynamic therapy. However, it is not yet clear in which respects direct anchoring of FA to the NP or the use of spacers, based on polyethylene glycol (PEG) chains, are different and whether one approach is better than the other. In this work, we combine Quantum Mechanics (QM) and classical Molecular Dynamics (MD) to design and optimize the FA functionalization on bare and PEGylated TiO(2) models and to study the dynamical behavior of the resulting nanoconjugates in a pure water environment and in physiological conditions. We observe that they are chemically stable, even under the effect of increasing temperature (up to 500 K). Using the results from long MD simulations (100 ns) and from free energy calculations, we determine how the density of FA molecules on the TiO(2) NP and the presence of PEG spacers impact on the actual exposure of the ligands, especially by affecting the extent of FA–FA intermolecular interactions, which are detrimental for the targeting ability of FA towards the folate receptor. This analysis provides a solid and rational basis for experimentalists to define the optimal FA density and the more appropriate mode of anchoring to the carrier, according to the final purpose of the nanoconjugate. |
format | Online Article Text |
id | pubmed-9404434 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-94044342022-09-19 Multi-scale modeling of folic acid-functionalized TiO(2) nanoparticles for active targeting of tumor cells Donadoni, Edoardo Siani, Paulo Frigerio, Giulia Di Valentin, Cristiana Nanoscale Chemistry Strategies based on the active targeting of tumor cells are emerging as smart and efficient nanomedical procedures. Folic acid (FA) is a vitamin and a well-established tumor targeting agent because of its strong affinity for the folate receptor (FR), which is an overexpressed protein on the cell membranes of the tumor cells. FA can be successfully anchored to several nanocarriers, including inorganic nanoparticles (NPs) based on transition metal oxides. Among them, TiO(2) is extremely interesting because of its excellent photoabsorption and photocatalytic properties, which can be exploited in photodynamic therapy. However, it is not yet clear in which respects direct anchoring of FA to the NP or the use of spacers, based on polyethylene glycol (PEG) chains, are different and whether one approach is better than the other. In this work, we combine Quantum Mechanics (QM) and classical Molecular Dynamics (MD) to design and optimize the FA functionalization on bare and PEGylated TiO(2) models and to study the dynamical behavior of the resulting nanoconjugates in a pure water environment and in physiological conditions. We observe that they are chemically stable, even under the effect of increasing temperature (up to 500 K). Using the results from long MD simulations (100 ns) and from free energy calculations, we determine how the density of FA molecules on the TiO(2) NP and the presence of PEG spacers impact on the actual exposure of the ligands, especially by affecting the extent of FA–FA intermolecular interactions, which are detrimental for the targeting ability of FA towards the folate receptor. This analysis provides a solid and rational basis for experimentalists to define the optimal FA density and the more appropriate mode of anchoring to the carrier, according to the final purpose of the nanoconjugate. The Royal Society of Chemistry 2022-08-08 /pmc/articles/PMC9404434/ /pubmed/35959762 http://dx.doi.org/10.1039/d2nr02603a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Donadoni, Edoardo Siani, Paulo Frigerio, Giulia Di Valentin, Cristiana Multi-scale modeling of folic acid-functionalized TiO(2) nanoparticles for active targeting of tumor cells |
title | Multi-scale modeling of folic acid-functionalized TiO(2) nanoparticles for active targeting of tumor cells |
title_full | Multi-scale modeling of folic acid-functionalized TiO(2) nanoparticles for active targeting of tumor cells |
title_fullStr | Multi-scale modeling of folic acid-functionalized TiO(2) nanoparticles for active targeting of tumor cells |
title_full_unstemmed | Multi-scale modeling of folic acid-functionalized TiO(2) nanoparticles for active targeting of tumor cells |
title_short | Multi-scale modeling of folic acid-functionalized TiO(2) nanoparticles for active targeting of tumor cells |
title_sort | multi-scale modeling of folic acid-functionalized tio(2) nanoparticles for active targeting of tumor cells |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404434/ https://www.ncbi.nlm.nih.gov/pubmed/35959762 http://dx.doi.org/10.1039/d2nr02603a |
work_keys_str_mv | AT donadoniedoardo multiscalemodelingoffolicacidfunctionalizedtio2nanoparticlesforactivetargetingoftumorcells AT sianipaulo multiscalemodelingoffolicacidfunctionalizedtio2nanoparticlesforactivetargetingoftumorcells AT frigeriogiulia multiscalemodelingoffolicacidfunctionalizedtio2nanoparticlesforactivetargetingoftumorcells AT divalentincristiana multiscalemodelingoffolicacidfunctionalizedtio2nanoparticlesforactivetargetingoftumorcells |