Cargando…
Dynamic Evolution of Gas Flow during Coalbed Methane Recovery to Reduce Greenhouse Gas Emission: A Case Study
[Image: see text] Gas pre-extraction technology in a coal reservoir can not only reduce greenhouse gas (GHG) emissions but also effectively recover coalbed methane (CBM). In this work, we use a geomechanical-coupled gas flow (GCF) model to simulate and analyze the pre-extraction effect of a mining-d...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404527/ https://www.ncbi.nlm.nih.gov/pubmed/36033691 http://dx.doi.org/10.1021/acsomega.2c03274 |
_version_ | 1784773661107945472 |
---|---|
author | Song, Haoran Lin, Baiquan Zhong, Zheng Liu, Ting |
author_facet | Song, Haoran Lin, Baiquan Zhong, Zheng Liu, Ting |
author_sort | Song, Haoran |
collection | PubMed |
description | [Image: see text] Gas pre-extraction technology in a coal reservoir can not only reduce greenhouse gas (GHG) emissions but also effectively recover coalbed methane (CBM). In this work, we use a geomechanical-coupled gas flow (GCF) model to simulate and analyze the pre-extraction effect of a mining-disturbed coal seam. First, the simulation results of the GCF model are compared with field test data to verify the correctness and reliability of our model. Then, the evolution law of the stress field, permeability field, and gas flow field in the extraction process is analyzed through a case study. The results show that the first principal stress of coal in a mining area increases first and then decreases slowly and reaches the peak value at 5 m. The third principal stress increases gradually at first and becomes stable after 10 m. As the distance from the mining face increases, the permeability and gas pressure of the coal seam show continuous and asymmetric “U”-shaped and “n”-shaped distribution characteristics, respectively. In addition, the recovery effect and abnormal emission factors of CBM are discussed. This study can provide theoretical guidance for optimizing the CBM recovery effect and reducing GHG emissions during mining. |
format | Online Article Text |
id | pubmed-9404527 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-94045272022-08-26 Dynamic Evolution of Gas Flow during Coalbed Methane Recovery to Reduce Greenhouse Gas Emission: A Case Study Song, Haoran Lin, Baiquan Zhong, Zheng Liu, Ting ACS Omega [Image: see text] Gas pre-extraction technology in a coal reservoir can not only reduce greenhouse gas (GHG) emissions but also effectively recover coalbed methane (CBM). In this work, we use a geomechanical-coupled gas flow (GCF) model to simulate and analyze the pre-extraction effect of a mining-disturbed coal seam. First, the simulation results of the GCF model are compared with field test data to verify the correctness and reliability of our model. Then, the evolution law of the stress field, permeability field, and gas flow field in the extraction process is analyzed through a case study. The results show that the first principal stress of coal in a mining area increases first and then decreases slowly and reaches the peak value at 5 m. The third principal stress increases gradually at first and becomes stable after 10 m. As the distance from the mining face increases, the permeability and gas pressure of the coal seam show continuous and asymmetric “U”-shaped and “n”-shaped distribution characteristics, respectively. In addition, the recovery effect and abnormal emission factors of CBM are discussed. This study can provide theoretical guidance for optimizing the CBM recovery effect and reducing GHG emissions during mining. American Chemical Society 2022-08-11 /pmc/articles/PMC9404527/ /pubmed/36033691 http://dx.doi.org/10.1021/acsomega.2c03274 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Song, Haoran Lin, Baiquan Zhong, Zheng Liu, Ting Dynamic Evolution of Gas Flow during Coalbed Methane Recovery to Reduce Greenhouse Gas Emission: A Case Study |
title | Dynamic Evolution
of Gas Flow during Coalbed Methane
Recovery to Reduce Greenhouse Gas Emission: A Case Study |
title_full | Dynamic Evolution
of Gas Flow during Coalbed Methane
Recovery to Reduce Greenhouse Gas Emission: A Case Study |
title_fullStr | Dynamic Evolution
of Gas Flow during Coalbed Methane
Recovery to Reduce Greenhouse Gas Emission: A Case Study |
title_full_unstemmed | Dynamic Evolution
of Gas Flow during Coalbed Methane
Recovery to Reduce Greenhouse Gas Emission: A Case Study |
title_short | Dynamic Evolution
of Gas Flow during Coalbed Methane
Recovery to Reduce Greenhouse Gas Emission: A Case Study |
title_sort | dynamic evolution
of gas flow during coalbed methane
recovery to reduce greenhouse gas emission: a case study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404527/ https://www.ncbi.nlm.nih.gov/pubmed/36033691 http://dx.doi.org/10.1021/acsomega.2c03274 |
work_keys_str_mv | AT songhaoran dynamicevolutionofgasflowduringcoalbedmethanerecoverytoreducegreenhousegasemissionacasestudy AT linbaiquan dynamicevolutionofgasflowduringcoalbedmethanerecoverytoreducegreenhousegasemissionacasestudy AT zhongzheng dynamicevolutionofgasflowduringcoalbedmethanerecoverytoreducegreenhousegasemissionacasestudy AT liuting dynamicevolutionofgasflowduringcoalbedmethanerecoverytoreducegreenhousegasemissionacasestudy |