Cargando…
Lung Field Segmentation in Chest X-ray Images Using Superpixel Resizing and Encoder–Decoder Segmentation Networks
Lung segmentation of chest X-ray (CXR) images is a fundamental step in many diagnostic applications. Most lung field segmentation methods reduce the image size to speed up the subsequent processing time. Then, the low-resolution result is upsampled to the original high-resolution image. Nevertheless...
Autores principales: | Lee, Chien-Cheng, So, Edmund Cheung, Saidy, Lamin, Wang, Min-Ju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404743/ https://www.ncbi.nlm.nih.gov/pubmed/36004876 http://dx.doi.org/10.3390/bioengineering9080351 |
Ejemplares similares
-
COVID-SegNet: encoder–decoder-based architecture for COVID-19 lesion segmentation in chest X-ray
por: Agrawal, Tarun, et al.
Publicado: (2023) -
A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X-ray images
por: Ullah, Ihsan, et al.
Publicado: (2023) -
Author Correction: A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X-ray images
por: Ullah, Ihsan, et al.
Publicado: (2023) -
Superpixel-based segmentation of muscle fibers in multi-channel microscopy
por: Nguyen, Binh P., et al.
Publicado: (2016) -
Automatic glioma segmentation based on adaptive superpixel
por: Wu, Yaping, et al.
Publicado: (2019)