Cargando…
FedAAR: A Novel Federated Learning Framework for Animal Activity Recognition with Wearable Sensors
SIMPLE SUMMARY: Automated animal activity recognition has achieved great success due to the recent advances in deep learning, allowing staff to identify variations in the animal behavioural repertoire in real-time. The high performance of deep learning largely relies on the availability of big data,...
Autores principales: | Mao, Axiu, Huang, Endai, Gan, Haiming, Liu, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404798/ https://www.ncbi.nlm.nih.gov/pubmed/36009732 http://dx.doi.org/10.3390/ani12162142 |
Ejemplares similares
-
Cross-Modality Interaction Network for Equine Activity Recognition Using Imbalanced Multi-Modal Data †
por: Mao, Axiu, et al.
Publicado: (2021) -
FedMed: A Federated Learning Framework for Language Modeling
por: Wu, Xing, et al.
Publicado: (2020) -
Case report: ‘AARS2 leukodystrophy’
por: Axelsen, Tobias Melton, et al.
Publicado: (2021) -
Wearable Sensor Data Classification for Human Activity Recognition Based on an Iterative Learning Framework †
por: Davila, Juan Carlos, et al.
Publicado: (2017) -
Guide to diagnosis and appraisal of AAR damage to concrete in structures
por: Godart, Bruno, et al.
Publicado: (2013)