Cargando…
A Fully Unsupervised Deep Learning Framework for Non-Rigid Fundus Image Registration
In ophthalmology, the registration problem consists of finding a geometric transformation that aligns a pair of images, supporting eye-care specialists who need to record and compare images of the same patient. Considering the registration methods for handling eye fundus images, the literature offer...
Autores principales: | Benvenuto, Giovana A., Colnago, Marilaine, Dias, Maurício A., Negri, Rogério G., Silva, Erivaldo A., Casaca, Wallace |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404907/ https://www.ncbi.nlm.nih.gov/pubmed/36004894 http://dx.doi.org/10.3390/bioengineering9080369 |
Ejemplares similares
-
Risk Factors Associated with Mortality in Hospitalized Patients with COVID-19 during the Omicron Wave in Brazil
por: Colnago, Marilaine, et al.
Publicado: (2022) -
NrtNet: An Unsupervised Method for 3D Non-Rigid Point Cloud Registration Based on Transformer
por: Hu, Xiaobo, et al.
Publicado: (2022) -
A feasibility study to estimate optimal rigid‐body registration using combinatorial rigid registration optimization (CORRO)
por: Yorke, Afua A., et al.
Publicado: (2020) -
Unsupervised Deep Learning Registration of Uterine Cervix Sequence Images
por: Guo, Peng, et al.
Publicado: (2022) -
Unsupervised deep learning registration model for multimodal brain images
por: Abbasi, Samaneh, et al.
Publicado: (2023)