Cargando…
A Machine Learning Method with Filter-Based Feature Selection for Improved Prediction of Chronic Kidney Disease
The high prevalence of chronic kidney disease (CKD) is a significant public health concern globally. The condition has a high mortality rate, especially in developing countries. CKD often go undetected since there are no obvious early-stage symptoms. Meanwhile, early detection and on-time clinical i...
Autores principales: | Ebiaredoh-Mienye, Sarah A., Swart, Theo G., Esenogho, Ebenezer, Mienye, Ibomoiye Domor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405039/ https://www.ncbi.nlm.nih.gov/pubmed/36004875 http://dx.doi.org/10.3390/bioengineering9080350 |
Ejemplares similares
-
COVID-19 Diagnosis: A Review of Rapid Antigen, RT-PCR and Artificial Intelligence Methods
por: Aruleba, Raphael Taiwo, et al.
Publicado: (2022) -
Whole genome sequence based capsular typing and antimicrobial resistance prediction of Group B streptococcal isolates from colonized pregnant women in Nigeria
por: Bob-Manuel, Mienye, et al.
Publicado: (2021) -
Hazardous Effect of Low-Dose Aspirin in Patients with Predialysis Advanced Chronic Kidney Disease Assessed by Machine Learning Method Feature Selection
por: Tsai, Ming-Hsien, et al.
Publicado: (2021) -
Research and Application Validation of a Feature Wavelength Selection Method Based on Acousto-Optic Tunable Filter (AOTF) and Automatic Machine Learning (AutoML)
por: Ji, Zhongpeng, et al.
Publicado: (2022) -
Human-Designed Filters May Outperform Machine-Learned Filters
por: Zeng, Gengsheng L
Publicado: (2022)