Cargando…
Effect of Different Ambient Temperatures on Reproductive Outcome and Stress Level of Lactating Females in Two Mouse Strains
SIMPLE SUMMARY: The optimal temperature for laboratory mice has been under discussion for some time. Current standard temperature is 20 °C–24 °C but it has been suggested to elevate the standard to 30 °C, which is the thermoneutral zone for mice. In this study, the effect of different cage temperatu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405067/ https://www.ncbi.nlm.nih.gov/pubmed/36009730 http://dx.doi.org/10.3390/ani12162141 |
Sumario: | SIMPLE SUMMARY: The optimal temperature for laboratory mice has been under discussion for some time. Current standard temperature is 20 °C–24 °C but it has been suggested to elevate the standard to 30 °C, which is the thermoneutral zone for mice. In this study, the effect of different cage temperatures (20 °C, 25 °C, 30 °C) on reproduction and stress hormone metabolite excretion was evaluated in lactating females of two commonly used mouse strains. Pup loss was higher, and weights of mothers and pups were reduced at 30 °C compared to the lower temperatures. In addition, pups showed increased tail length at weaning under the high temperature (30 °C). There was no difference in stress hormone metabolite excretion in mice between temperature groups. We could not show any detrimental effects of the lower or higher cage temperature on stress hormone metabolite excretion, but found decreased reproductive outcome under the higher temperature. ABSTRACT: Ambient temperature is an important non-biotic environmental factor influencing immunological and oncological parameters in laboratory mice. It is under discussion which temperature is more appropriate and whether the commonly used room temperature in rodent facilities of about 21 °C represents a chronic cold stress or the 30 °C of the thermoneutral zone constitutes heat stress for the animals. In this study, we selected the physiological challenging period of lactation to investigate the influence of a cage temperature of 20 °C, 25 °C, and 30 °C, respectively, on reproductive performance and stress hormone levels in two frequently used mouse strains. We found that B6D2F1 hybrid mothers weaned more pups compared to C57BL/6N mothers, and that the number of weaned pups was reduced when mothers of both strains were kept at 30 °C. Furthermore, at 30 °C, mothers and pups showed reduced body weight at weaning and offspring had longer tails. Despite pronounced temperature effects on reproductive parameters, we did not find any temperature effects on adrenocortical activity in breeding and control mice. Independent of the ambient temperature, however, we found that females raising pups showed elevated levels of faecal corticosterone metabolites (FCMs) compared to controls. Peak levels of stress hormone metabolites were measured around birth and during the third week of lactation. Our results provide no evidence of an advantage for keeping lactating mice in ambient temperatures near the thermoneutral zone. In contrast, we found that a 30 °C cage temperature during lactation reduced body mass in females and their offspring and declined female reproductive performance. |
---|