Cargando…

Melatonin Decreases Acute Inflammatory Response to Neural Probe Insertion

Neural electrode insertion trauma impedes the recording and stimulation capabilities of numerous diagnostic and treatment avenues. Implantation leads to the activation of inflammatory markers and cell types, which is detrimental to neural tissue health and recording capabilities. Oxidative stress an...

Descripción completa

Detalles Bibliográficos
Autores principales: Krahe, Daniela D., Woeppel, Kevin M., Yang, Qianru, Kushwah, Neetu, Cui, Xinyan Tracy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405074/
https://www.ncbi.nlm.nih.gov/pubmed/36009346
http://dx.doi.org/10.3390/antiox11081628
_version_ 1784773791164923904
author Krahe, Daniela D.
Woeppel, Kevin M.
Yang, Qianru
Kushwah, Neetu
Cui, Xinyan Tracy
author_facet Krahe, Daniela D.
Woeppel, Kevin M.
Yang, Qianru
Kushwah, Neetu
Cui, Xinyan Tracy
author_sort Krahe, Daniela D.
collection PubMed
description Neural electrode insertion trauma impedes the recording and stimulation capabilities of numerous diagnostic and treatment avenues. Implantation leads to the activation of inflammatory markers and cell types, which is detrimental to neural tissue health and recording capabilities. Oxidative stress and inflammation at the implant site have been shown to decrease with chronic administration of antioxidant melatonin at week 16, but its effects on the acute landscape have not been studied. To assess the effect of melatonin administration in the acute phase, specifically the first week post-implantation, we utilized histological and q-PCR methods to quantify cellular and molecular indicators of inflammation and oxidative stress in the tissue surrounding implanted probes in C57BL/6 mice as well as two-photon microscopy to track the microglial responses to the probes in real-time in transgenic mice expressing GFP with CX3CR1 promotor. Histological results indicate that melatonin effectively maintained neuron density surrounding the electrode, inhibited accumulation and activation of microglia and astrocytes, and reduced oxidative tissue damage. The expression of the pro-inflammatory cytokines, TNF-α and IL-6, were significantly reduced in melatonin-treated animals. Additionally, microglial encapsulation of the implant surface was inhibited by melatonin as compared to control animals following implantation. Our results combined with previous research suggest that melatonin is a particularly suitable drug for modulating inflammatory activity around neural electrode implants both acutely and chronically, translating to more stable and reliable interfaces.
format Online
Article
Text
id pubmed-9405074
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94050742022-08-26 Melatonin Decreases Acute Inflammatory Response to Neural Probe Insertion Krahe, Daniela D. Woeppel, Kevin M. Yang, Qianru Kushwah, Neetu Cui, Xinyan Tracy Antioxidants (Basel) Article Neural electrode insertion trauma impedes the recording and stimulation capabilities of numerous diagnostic and treatment avenues. Implantation leads to the activation of inflammatory markers and cell types, which is detrimental to neural tissue health and recording capabilities. Oxidative stress and inflammation at the implant site have been shown to decrease with chronic administration of antioxidant melatonin at week 16, but its effects on the acute landscape have not been studied. To assess the effect of melatonin administration in the acute phase, specifically the first week post-implantation, we utilized histological and q-PCR methods to quantify cellular and molecular indicators of inflammation and oxidative stress in the tissue surrounding implanted probes in C57BL/6 mice as well as two-photon microscopy to track the microglial responses to the probes in real-time in transgenic mice expressing GFP with CX3CR1 promotor. Histological results indicate that melatonin effectively maintained neuron density surrounding the electrode, inhibited accumulation and activation of microglia and astrocytes, and reduced oxidative tissue damage. The expression of the pro-inflammatory cytokines, TNF-α and IL-6, were significantly reduced in melatonin-treated animals. Additionally, microglial encapsulation of the implant surface was inhibited by melatonin as compared to control animals following implantation. Our results combined with previous research suggest that melatonin is a particularly suitable drug for modulating inflammatory activity around neural electrode implants both acutely and chronically, translating to more stable and reliable interfaces. MDPI 2022-08-22 /pmc/articles/PMC9405074/ /pubmed/36009346 http://dx.doi.org/10.3390/antiox11081628 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Krahe, Daniela D.
Woeppel, Kevin M.
Yang, Qianru
Kushwah, Neetu
Cui, Xinyan Tracy
Melatonin Decreases Acute Inflammatory Response to Neural Probe Insertion
title Melatonin Decreases Acute Inflammatory Response to Neural Probe Insertion
title_full Melatonin Decreases Acute Inflammatory Response to Neural Probe Insertion
title_fullStr Melatonin Decreases Acute Inflammatory Response to Neural Probe Insertion
title_full_unstemmed Melatonin Decreases Acute Inflammatory Response to Neural Probe Insertion
title_short Melatonin Decreases Acute Inflammatory Response to Neural Probe Insertion
title_sort melatonin decreases acute inflammatory response to neural probe insertion
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405074/
https://www.ncbi.nlm.nih.gov/pubmed/36009346
http://dx.doi.org/10.3390/antiox11081628
work_keys_str_mv AT krahedanielad melatonindecreasesacuteinflammatoryresponsetoneuralprobeinsertion
AT woeppelkevinm melatonindecreasesacuteinflammatoryresponsetoneuralprobeinsertion
AT yangqianru melatonindecreasesacuteinflammatoryresponsetoneuralprobeinsertion
AT kushwahneetu melatonindecreasesacuteinflammatoryresponsetoneuralprobeinsertion
AT cuixinyantracy melatonindecreasesacuteinflammatoryresponsetoneuralprobeinsertion