Cargando…
Strategies for tackling the class imbalance problem of oropharyngeal primary tumor segmentation on magnetic resonance imaging
BACKGROUND AND PURPOSE: Contouring oropharyngeal primary tumors in radiotherapy is currently done manually which is time-consuming. Autocontouring techniques based on deep learning methods are a desirable alternative, but these methods can render suboptimal results when the structure to segment is c...
Autores principales: | Rodríguez Outeiral, Roque, Bos, Paula, van der Hulst, Hedda J., Al-Mamgani, Abrahim, Jasperse, Bas, Simões, Rita, van der Heide, Uulke A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405079/ https://www.ncbi.nlm.nih.gov/pubmed/36035088 http://dx.doi.org/10.1016/j.phro.2022.08.005 |
Ejemplares similares
-
Oropharyngeal primary tumor segmentation for radiotherapy planning on magnetic resonance imaging using deep learning
por: Rodríguez Outeiral, Roque, et al.
Publicado: (2021) -
Deep learning for segmentation of the cervical cancer gross tumor volume on magnetic resonance imaging for brachytherapy
por: Rodríguez Outeiral, Roque, et al.
Publicado: (2023) -
A network score-based metric to optimize the quality assurance of automatic radiotherapy target segmentations
por: Rodríguez Outeiral, Roque, et al.
Publicado: (2023) -
Clinical variables and magnetic resonance imaging‐based radiomics predict human papillomavirus status of oropharyngeal cancer
por: Bos, Paula, et al.
Publicado: (2020) -
A predictive model for residual disease after (chemo) radiotherapy in oropharyngeal carcinoma: Combined radiological and clinical evaluation of tumor response
por: Gouw, Zeno A.R., et al.
Publicado: (2017)