Cargando…
Challenges and chances for deep-learning based target and organ at risk segmentation in radiotherapy of head and neck cancer
Autor principal: | Nijkamp, Jasper |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405092/ https://www.ncbi.nlm.nih.gov/pubmed/36035089 http://dx.doi.org/10.1016/j.phro.2022.08.003 |
Ejemplares similares
-
Towards interactive deep-learning for tumour segmentation in head and neck cancer radiotherapy
por: Wei, Zixiang, et al.
Publicado: (2022) -
Validation of clinical acceptability of deep-learning-based automated segmentation of organs-at-risk for head-and-neck radiotherapy treatment planning
por: Lucido, J. John, et al.
Publicado: (2023) -
Machine Learning-Based Quality Assurance for Automatic Segmentation
of Head-and-Neck Organs-at-Risk in Radiotherapy
por: Luan, Shunyao, et al.
Publicado: (2023) -
Deep Learning-Based Segmentation of Head and Neck Organs-at-Risk with Clinical Partially Labeled Data
por: Cubero, Lucía, et al.
Publicado: (2022) -
PCG-net: feature adaptive deep learning for automated head and neck organs-at-risk segmentation
por: Luan, Shunyao, et al.
Publicado: (2023)