Cargando…
A Nano-Liposomal Formulation of Caffeic Acid Phenethyl Ester Modulates Nrf2 and NF-κβ Signaling and Alleviates Experimentally Induced Acute Pancreatitis in a Rat Model
The currently available management strategies for acute pancreatitis are inadequately effective which calls for exploration of new approaches to treat this condition. Caffeic acid phenethyl ester (CAPE) is a major bioactive constituent of honeybee propolis with promising therapeutic and preventive a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405210/ https://www.ncbi.nlm.nih.gov/pubmed/36009255 http://dx.doi.org/10.3390/antiox11081536 |
_version_ | 1784773824987791360 |
---|---|
author | Shahin, Nancy Nabil Shamma, Rehab Nabil Ahmed, Iman Saad |
author_facet | Shahin, Nancy Nabil Shamma, Rehab Nabil Ahmed, Iman Saad |
author_sort | Shahin, Nancy Nabil |
collection | PubMed |
description | The currently available management strategies for acute pancreatitis are inadequately effective which calls for exploration of new approaches to treat this condition. Caffeic acid phenethyl ester (CAPE) is a major bioactive constituent of honeybee propolis with promising therapeutic and preventive applications. However, its pharmaceutical potential and clinical use are hindered by its poor water solubility and limited plasma stability. In this study, we aimed to prepare, characterize and evaluate a CAPE-loaded nanoliposomal formulation to improve the efficacy of CAPE for the management of acute pancreatitis. The CAPE-loaded nanoliposomes (CAPE-loaded-NL) were prepared by a thin layer evaporation technique and were optimized using three edge activators. CAPE-loaded-NL were characterized for their vesicle size (VS), zeta potential (ZP), encapsulation efficiency (EE), polydispersity index (PDI), crystalline state and morphology. The protective effect of the optimal CAPE-loaded-NL was evaluated in a rat model of acute pancreatitis induced by administering a single intraperitoneal injection of L-ornithine. Oral pretreatment with CAPE-loaded-NL significantly counteracted ornithine-induced elevation in serum activities of pancreatic digestive enzymes and pancreatic levels of malondialdehyde, nuclear factor kappa B (NF-κB) p65, tumor necrosis factor-alpha, nitrite/nitrate, cleaved caspase-3 and myeloperoxidase activity. Moreover, pretreatment with CAPE-loaded-NL significantly reinstated the ornithine-lowered glutathione reductase activity, glutathione, nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 levels and ATP/ADP ratio, and potentiated the Bcl-2/Bax ratio in pancreatic tissue. CAPE-loaded-NL displayed superior antioxidant, anti-inflammatory and anti-apoptotic effects compared to free CAPE oral suspension and achieved a more potent correction of the derangements in serum amylase and pancreatic myeloperoxidase activities. The histological observations were in line with the biochemical findings. Our results suggest that CAPE-loaded-NL provide a promising interventional approach for acute pancreatitis mainly through the enhancement of the exerted antioxidant, anti-inflammatory and anti-apoptotic effects which may be mediated, at least in part, through modulation of Nrf2 and NF-κβ signaling. |
format | Online Article Text |
id | pubmed-9405210 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94052102022-08-26 A Nano-Liposomal Formulation of Caffeic Acid Phenethyl Ester Modulates Nrf2 and NF-κβ Signaling and Alleviates Experimentally Induced Acute Pancreatitis in a Rat Model Shahin, Nancy Nabil Shamma, Rehab Nabil Ahmed, Iman Saad Antioxidants (Basel) Article The currently available management strategies for acute pancreatitis are inadequately effective which calls for exploration of new approaches to treat this condition. Caffeic acid phenethyl ester (CAPE) is a major bioactive constituent of honeybee propolis with promising therapeutic and preventive applications. However, its pharmaceutical potential and clinical use are hindered by its poor water solubility and limited plasma stability. In this study, we aimed to prepare, characterize and evaluate a CAPE-loaded nanoliposomal formulation to improve the efficacy of CAPE for the management of acute pancreatitis. The CAPE-loaded nanoliposomes (CAPE-loaded-NL) were prepared by a thin layer evaporation technique and were optimized using three edge activators. CAPE-loaded-NL were characterized for their vesicle size (VS), zeta potential (ZP), encapsulation efficiency (EE), polydispersity index (PDI), crystalline state and morphology. The protective effect of the optimal CAPE-loaded-NL was evaluated in a rat model of acute pancreatitis induced by administering a single intraperitoneal injection of L-ornithine. Oral pretreatment with CAPE-loaded-NL significantly counteracted ornithine-induced elevation in serum activities of pancreatic digestive enzymes and pancreatic levels of malondialdehyde, nuclear factor kappa B (NF-κB) p65, tumor necrosis factor-alpha, nitrite/nitrate, cleaved caspase-3 and myeloperoxidase activity. Moreover, pretreatment with CAPE-loaded-NL significantly reinstated the ornithine-lowered glutathione reductase activity, glutathione, nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 levels and ATP/ADP ratio, and potentiated the Bcl-2/Bax ratio in pancreatic tissue. CAPE-loaded-NL displayed superior antioxidant, anti-inflammatory and anti-apoptotic effects compared to free CAPE oral suspension and achieved a more potent correction of the derangements in serum amylase and pancreatic myeloperoxidase activities. The histological observations were in line with the biochemical findings. Our results suggest that CAPE-loaded-NL provide a promising interventional approach for acute pancreatitis mainly through the enhancement of the exerted antioxidant, anti-inflammatory and anti-apoptotic effects which may be mediated, at least in part, through modulation of Nrf2 and NF-κβ signaling. MDPI 2022-08-07 /pmc/articles/PMC9405210/ /pubmed/36009255 http://dx.doi.org/10.3390/antiox11081536 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shahin, Nancy Nabil Shamma, Rehab Nabil Ahmed, Iman Saad A Nano-Liposomal Formulation of Caffeic Acid Phenethyl Ester Modulates Nrf2 and NF-κβ Signaling and Alleviates Experimentally Induced Acute Pancreatitis in a Rat Model |
title | A Nano-Liposomal Formulation of Caffeic Acid Phenethyl Ester Modulates Nrf2 and NF-κβ Signaling and Alleviates Experimentally Induced Acute Pancreatitis in a Rat Model |
title_full | A Nano-Liposomal Formulation of Caffeic Acid Phenethyl Ester Modulates Nrf2 and NF-κβ Signaling and Alleviates Experimentally Induced Acute Pancreatitis in a Rat Model |
title_fullStr | A Nano-Liposomal Formulation of Caffeic Acid Phenethyl Ester Modulates Nrf2 and NF-κβ Signaling and Alleviates Experimentally Induced Acute Pancreatitis in a Rat Model |
title_full_unstemmed | A Nano-Liposomal Formulation of Caffeic Acid Phenethyl Ester Modulates Nrf2 and NF-κβ Signaling and Alleviates Experimentally Induced Acute Pancreatitis in a Rat Model |
title_short | A Nano-Liposomal Formulation of Caffeic Acid Phenethyl Ester Modulates Nrf2 and NF-κβ Signaling and Alleviates Experimentally Induced Acute Pancreatitis in a Rat Model |
title_sort | nano-liposomal formulation of caffeic acid phenethyl ester modulates nrf2 and nf-κβ signaling and alleviates experimentally induced acute pancreatitis in a rat model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405210/ https://www.ncbi.nlm.nih.gov/pubmed/36009255 http://dx.doi.org/10.3390/antiox11081536 |
work_keys_str_mv | AT shahinnancynabil ananoliposomalformulationofcaffeicacidphenethylestermodulatesnrf2andnfkbsignalingandalleviatesexperimentallyinducedacutepancreatitisinaratmodel AT shammarehabnabil ananoliposomalformulationofcaffeicacidphenethylestermodulatesnrf2andnfkbsignalingandalleviatesexperimentallyinducedacutepancreatitisinaratmodel AT ahmedimansaad ananoliposomalformulationofcaffeicacidphenethylestermodulatesnrf2andnfkbsignalingandalleviatesexperimentallyinducedacutepancreatitisinaratmodel AT shahinnancynabil nanoliposomalformulationofcaffeicacidphenethylestermodulatesnrf2andnfkbsignalingandalleviatesexperimentallyinducedacutepancreatitisinaratmodel AT shammarehabnabil nanoliposomalformulationofcaffeicacidphenethylestermodulatesnrf2andnfkbsignalingandalleviatesexperimentallyinducedacutepancreatitisinaratmodel AT ahmedimansaad nanoliposomalformulationofcaffeicacidphenethylestermodulatesnrf2andnfkbsignalingandalleviatesexperimentallyinducedacutepancreatitisinaratmodel |