Cargando…

Feasibility of Implanting a Foot–Ankle Endoprosthesis within Skin in a Rabbit Model of Transtibial Amputation

Prosthetic limbs that are completely implanted within skin (i.e., endoprostheses) could permit direct, physical muscle–prosthesis attachment to restore more natural sensorimotor function to people with amputation. The objective of our study was to test, in a rabbit model, the feasibility of replacin...

Descripción completa

Detalles Bibliográficos
Autores principales: Crouch, Dustin L., Hall, Patrick T., Stubbs, Caleb, Billings, Caroline, Pedersen, Alisha P., Burton, Bryce, Greenacre, Cheryl B., Stephenson, Stacy M., Anderson, David E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405244/
https://www.ncbi.nlm.nih.gov/pubmed/36004873
http://dx.doi.org/10.3390/bioengineering9080348
_version_ 1784773833444556800
author Crouch, Dustin L.
Hall, Patrick T.
Stubbs, Caleb
Billings, Caroline
Pedersen, Alisha P.
Burton, Bryce
Greenacre, Cheryl B.
Stephenson, Stacy M.
Anderson, David E.
author_facet Crouch, Dustin L.
Hall, Patrick T.
Stubbs, Caleb
Billings, Caroline
Pedersen, Alisha P.
Burton, Bryce
Greenacre, Cheryl B.
Stephenson, Stacy M.
Anderson, David E.
author_sort Crouch, Dustin L.
collection PubMed
description Prosthetic limbs that are completely implanted within skin (i.e., endoprostheses) could permit direct, physical muscle–prosthesis attachment to restore more natural sensorimotor function to people with amputation. The objective of our study was to test, in a rabbit model, the feasibility of replacing the lost foot after hindlimb transtibial amputation by implanting a novel rigid foot–ankle endoprosthesis that is fully covered with skin. We first conducted a pilot, non-survival surgery in two rabbits to determine the maximum size of the skin flap that could be made from the biological foot–ankle. The skin flap size was used to determine the dimensions of the endoprosthesis foot segment. Rigid foot–ankle endoprosthesis prototypes were successfully implanted in three rabbits. The skin incisions healed over a period of approximately 1 month after surgery, with extensive fur regrowth by the pre-defined study endpoint of approximately 2 months post surgery. Upon gross inspection, the skin surrounding the endoprosthesis appeared normal, but a substantial subdermal fibrous capsule had formed around the endoprosthesis. Histology indicated that the structure and thickness of the skin layers (epidermis and dermis) were similar between the operated and non-operated limbs. A layer of subdermal connective tissue representing the fibrous capsule surrounded the endoprosthesis. In the operated limb of one rabbit, the subdermal connective tissue layer was approximately twice as thick as the skin on the medial (skin = 0.43 mm, subdermal = 0.84 mm), ventral (skin = 0.80 mm, subdermal = 1.47 mm), and lateral (skin = 0.76 mm, subdermal = 1.42 mm) aspects of the endoprosthesis. Our results successfully demonstrated the feasibility of implanting a fully skin-covered rigid foot–ankle endoprosthesis to replace the lost tibia–foot segment of the lower limb. Concerns include the fibrotic capsule which could limit the range of motion of jointed endoprostheses. Future studies include testing of endoprosthetics, as well as materials and pharmacologic agents that may suppress fibrous encapsulation.
format Online
Article
Text
id pubmed-9405244
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94052442022-08-26 Feasibility of Implanting a Foot–Ankle Endoprosthesis within Skin in a Rabbit Model of Transtibial Amputation Crouch, Dustin L. Hall, Patrick T. Stubbs, Caleb Billings, Caroline Pedersen, Alisha P. Burton, Bryce Greenacre, Cheryl B. Stephenson, Stacy M. Anderson, David E. Bioengineering (Basel) Article Prosthetic limbs that are completely implanted within skin (i.e., endoprostheses) could permit direct, physical muscle–prosthesis attachment to restore more natural sensorimotor function to people with amputation. The objective of our study was to test, in a rabbit model, the feasibility of replacing the lost foot after hindlimb transtibial amputation by implanting a novel rigid foot–ankle endoprosthesis that is fully covered with skin. We first conducted a pilot, non-survival surgery in two rabbits to determine the maximum size of the skin flap that could be made from the biological foot–ankle. The skin flap size was used to determine the dimensions of the endoprosthesis foot segment. Rigid foot–ankle endoprosthesis prototypes were successfully implanted in three rabbits. The skin incisions healed over a period of approximately 1 month after surgery, with extensive fur regrowth by the pre-defined study endpoint of approximately 2 months post surgery. Upon gross inspection, the skin surrounding the endoprosthesis appeared normal, but a substantial subdermal fibrous capsule had formed around the endoprosthesis. Histology indicated that the structure and thickness of the skin layers (epidermis and dermis) were similar between the operated and non-operated limbs. A layer of subdermal connective tissue representing the fibrous capsule surrounded the endoprosthesis. In the operated limb of one rabbit, the subdermal connective tissue layer was approximately twice as thick as the skin on the medial (skin = 0.43 mm, subdermal = 0.84 mm), ventral (skin = 0.80 mm, subdermal = 1.47 mm), and lateral (skin = 0.76 mm, subdermal = 1.42 mm) aspects of the endoprosthesis. Our results successfully demonstrated the feasibility of implanting a fully skin-covered rigid foot–ankle endoprosthesis to replace the lost tibia–foot segment of the lower limb. Concerns include the fibrotic capsule which could limit the range of motion of jointed endoprostheses. Future studies include testing of endoprosthetics, as well as materials and pharmacologic agents that may suppress fibrous encapsulation. MDPI 2022-07-27 /pmc/articles/PMC9405244/ /pubmed/36004873 http://dx.doi.org/10.3390/bioengineering9080348 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Crouch, Dustin L.
Hall, Patrick T.
Stubbs, Caleb
Billings, Caroline
Pedersen, Alisha P.
Burton, Bryce
Greenacre, Cheryl B.
Stephenson, Stacy M.
Anderson, David E.
Feasibility of Implanting a Foot–Ankle Endoprosthesis within Skin in a Rabbit Model of Transtibial Amputation
title Feasibility of Implanting a Foot–Ankle Endoprosthesis within Skin in a Rabbit Model of Transtibial Amputation
title_full Feasibility of Implanting a Foot–Ankle Endoprosthesis within Skin in a Rabbit Model of Transtibial Amputation
title_fullStr Feasibility of Implanting a Foot–Ankle Endoprosthesis within Skin in a Rabbit Model of Transtibial Amputation
title_full_unstemmed Feasibility of Implanting a Foot–Ankle Endoprosthesis within Skin in a Rabbit Model of Transtibial Amputation
title_short Feasibility of Implanting a Foot–Ankle Endoprosthesis within Skin in a Rabbit Model of Transtibial Amputation
title_sort feasibility of implanting a foot–ankle endoprosthesis within skin in a rabbit model of transtibial amputation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405244/
https://www.ncbi.nlm.nih.gov/pubmed/36004873
http://dx.doi.org/10.3390/bioengineering9080348
work_keys_str_mv AT crouchdustinl feasibilityofimplantingafootankleendoprosthesiswithinskininarabbitmodeloftranstibialamputation
AT hallpatrickt feasibilityofimplantingafootankleendoprosthesiswithinskininarabbitmodeloftranstibialamputation
AT stubbscaleb feasibilityofimplantingafootankleendoprosthesiswithinskininarabbitmodeloftranstibialamputation
AT billingscaroline feasibilityofimplantingafootankleendoprosthesiswithinskininarabbitmodeloftranstibialamputation
AT pedersenalishap feasibilityofimplantingafootankleendoprosthesiswithinskininarabbitmodeloftranstibialamputation
AT burtonbryce feasibilityofimplantingafootankleendoprosthesiswithinskininarabbitmodeloftranstibialamputation
AT greenacrecherylb feasibilityofimplantingafootankleendoprosthesiswithinskininarabbitmodeloftranstibialamputation
AT stephensonstacym feasibilityofimplantingafootankleendoprosthesiswithinskininarabbitmodeloftranstibialamputation
AT andersondavide feasibilityofimplantingafootankleendoprosthesiswithinskininarabbitmodeloftranstibialamputation