Cargando…

Synthetic Antimicrobial Immunomodulatory Peptides: Ongoing Studies and Clinical Trials

The increasingly widespread antimicrobial resistance forces the search for new antimicrobial substances capable of fighting infection. Antimicrobial peptides (AMPs) and their synthetic analogs form an extensive group of compounds of great structural diversity and multifunctionality, different modes...

Descripción completa

Detalles Bibliográficos
Autores principales: Lesiuk, Małgorzata, Paduszyńska, Małgorzata, Greber, Katarzyna E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405281/
https://www.ncbi.nlm.nih.gov/pubmed/36009931
http://dx.doi.org/10.3390/antibiotics11081062
Descripción
Sumario:The increasingly widespread antimicrobial resistance forces the search for new antimicrobial substances capable of fighting infection. Antimicrobial peptides (AMPs) and their synthetic analogs form an extensive group of compounds of great structural diversity and multifunctionality, different modes of antimicrobial action, and considerable market potential. Some AMPs, in addition to their proven antibacterial, antifungal, and antiviral activity, also demonstrate anti-inflammatory and immunomodulatory capabilities; these are called innate defense regulator (IDR) peptides. IDR peptides stimulate or inhibit the body’s immune system, e.g., by stimulating leukocyte migration to the site of infection, driving macrophage differentiation and activation, providing chemotactic action for neutrophils, degranulation and activation of mast cells, altering chemokine and cytokine production, and even induction of angiogenesis and wound healing. Such multifunctional immunomodulatory peptide molecules are currently being investigated and developed. Exploring and utilizing IDR peptides as an indirect weapon against infectious diseases could represent a completely new strategy to cope with the issue of antimicrobial resistance.