Cargando…
Renal Ischemia/Reperfusion Mitigation via Geraniol: The Role of Nrf-2/HO-1/NQO-1 and TLR2,4/MYD88/NFκB Pathway
Background: Renal ischemia/reperfusion injury is a clinically recurrent event during kidney transplantation. Geraniol is a natural monoterpene essential oil component. This study aimed to inspect geraniol’s reno-protective actions against renal I/R injury with further analysis of embedded mechanisms...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405463/ https://www.ncbi.nlm.nih.gov/pubmed/36009287 http://dx.doi.org/10.3390/antiox11081568 |
_version_ | 1784773886997430272 |
---|---|
author | Mohamed, Maged E. Elmorsy, Mohammad A. Younis, Nancy S. |
author_facet | Mohamed, Maged E. Elmorsy, Mohammad A. Younis, Nancy S. |
author_sort | Mohamed, Maged E. |
collection | PubMed |
description | Background: Renal ischemia/reperfusion injury is a clinically recurrent event during kidney transplantation. Geraniol is a natural monoterpene essential oil component. This study aimed to inspect geraniol’s reno-protective actions against renal I/R injury with further analysis of embedded mechanisms of action through scrutinizing the Nrf-2/HO-1/NQO-1 and TLR2,4/MYD88/NFκB signaling pathways. Methods: Wistar male rats were randomized into five groups: Sham, Sham + geraniol, Renal I/R, and two Renal I/R + geraniol groups representing two doses of geraniol (100 and 200 mg/kg) for 14 days before the renal I/R. Renal I/R was surgically induced by occluding both left and right renal pedicles for 45 min, followed by reperfusion for 24 h. A docking study was performed to anticipate the expected affinity of geraniol towards three protein targets: hTLR4/MD2, hTLR2, and hNrf2/Keap1. Results: Renal I/R rats experienced severely compromised renal functions, histological alteration, oxidative stress status, escalated Nrf-2/HO-1/NQO-1, and amplified TLR2,4/MYD88/NFκB. Geraniol administration ameliorated renal function, alleviated histological changes, and enhanced Nrf-2/HO-1/NQO-1 with a subsequent intensification of antioxidant enzyme activities. Geraniol declined TLR2,4/MYD88/NFκB with subsequent TNF-α, IFN-γ, MCP-1 drop, Bax, caspase-3, and caspase-9 reduction IL-10 and Bcl-2 augmentation. Geraniol exhibited good fitting in the binding sites of the three in silico examined targets. Conclusions: Geraniol might protect against renal I/R via the inhibition of the TLR2,4/MYD88/NFκB pathway, mediating anti-inflammation and activation of the Nrf2 pathway, intervening in antioxidative activities. |
format | Online Article Text |
id | pubmed-9405463 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94054632022-08-26 Renal Ischemia/Reperfusion Mitigation via Geraniol: The Role of Nrf-2/HO-1/NQO-1 and TLR2,4/MYD88/NFκB Pathway Mohamed, Maged E. Elmorsy, Mohammad A. Younis, Nancy S. Antioxidants (Basel) Article Background: Renal ischemia/reperfusion injury is a clinically recurrent event during kidney transplantation. Geraniol is a natural monoterpene essential oil component. This study aimed to inspect geraniol’s reno-protective actions against renal I/R injury with further analysis of embedded mechanisms of action through scrutinizing the Nrf-2/HO-1/NQO-1 and TLR2,4/MYD88/NFκB signaling pathways. Methods: Wistar male rats were randomized into five groups: Sham, Sham + geraniol, Renal I/R, and two Renal I/R + geraniol groups representing two doses of geraniol (100 and 200 mg/kg) for 14 days before the renal I/R. Renal I/R was surgically induced by occluding both left and right renal pedicles for 45 min, followed by reperfusion for 24 h. A docking study was performed to anticipate the expected affinity of geraniol towards three protein targets: hTLR4/MD2, hTLR2, and hNrf2/Keap1. Results: Renal I/R rats experienced severely compromised renal functions, histological alteration, oxidative stress status, escalated Nrf-2/HO-1/NQO-1, and amplified TLR2,4/MYD88/NFκB. Geraniol administration ameliorated renal function, alleviated histological changes, and enhanced Nrf-2/HO-1/NQO-1 with a subsequent intensification of antioxidant enzyme activities. Geraniol declined TLR2,4/MYD88/NFκB with subsequent TNF-α, IFN-γ, MCP-1 drop, Bax, caspase-3, and caspase-9 reduction IL-10 and Bcl-2 augmentation. Geraniol exhibited good fitting in the binding sites of the three in silico examined targets. Conclusions: Geraniol might protect against renal I/R via the inhibition of the TLR2,4/MYD88/NFκB pathway, mediating anti-inflammation and activation of the Nrf2 pathway, intervening in antioxidative activities. MDPI 2022-08-13 /pmc/articles/PMC9405463/ /pubmed/36009287 http://dx.doi.org/10.3390/antiox11081568 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mohamed, Maged E. Elmorsy, Mohammad A. Younis, Nancy S. Renal Ischemia/Reperfusion Mitigation via Geraniol: The Role of Nrf-2/HO-1/NQO-1 and TLR2,4/MYD88/NFκB Pathway |
title | Renal Ischemia/Reperfusion Mitigation via Geraniol: The Role of Nrf-2/HO-1/NQO-1 and TLR2,4/MYD88/NFκB Pathway |
title_full | Renal Ischemia/Reperfusion Mitigation via Geraniol: The Role of Nrf-2/HO-1/NQO-1 and TLR2,4/MYD88/NFκB Pathway |
title_fullStr | Renal Ischemia/Reperfusion Mitigation via Geraniol: The Role of Nrf-2/HO-1/NQO-1 and TLR2,4/MYD88/NFκB Pathway |
title_full_unstemmed | Renal Ischemia/Reperfusion Mitigation via Geraniol: The Role of Nrf-2/HO-1/NQO-1 and TLR2,4/MYD88/NFκB Pathway |
title_short | Renal Ischemia/Reperfusion Mitigation via Geraniol: The Role of Nrf-2/HO-1/NQO-1 and TLR2,4/MYD88/NFκB Pathway |
title_sort | renal ischemia/reperfusion mitigation via geraniol: the role of nrf-2/ho-1/nqo-1 and tlr2,4/myd88/nfκb pathway |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405463/ https://www.ncbi.nlm.nih.gov/pubmed/36009287 http://dx.doi.org/10.3390/antiox11081568 |
work_keys_str_mv | AT mohamedmagede renalischemiareperfusionmitigationviageranioltheroleofnrf2ho1nqo1andtlr24myd88nfkbpathway AT elmorsymohammada renalischemiareperfusionmitigationviageranioltheroleofnrf2ho1nqo1andtlr24myd88nfkbpathway AT younisnancys renalischemiareperfusionmitigationviageranioltheroleofnrf2ho1nqo1andtlr24myd88nfkbpathway |