Cargando…

Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning

Matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry (MALDI‐TOF MS) has become a staple in clinical microbiology laboratories. Protein‐profiling of bacteria using this technique has accelerated the identification of pathogens in diagnostic workflows. Recently, lipid profiling...

Descripción completa

Detalles Bibliográficos
Autores principales: Pizzato, Jade, Tang, Wenhao, Bernabeu, Sandrine, Bonnin, Rémy A., Bille, Emmanuelle, Farfour, Eric, Guillard, Thomas, Barraud, Olivier, Cattoir, Vincent, Plouzeau, Chloe, Corvec, Stéphane, Shahrezaei, Vahid, Dortet, Laurent, Larrouy‐Maumus, Gerald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405496/
https://www.ncbi.nlm.nih.gov/pubmed/36004556
http://dx.doi.org/10.1002/mbo3.1313
_version_ 1784773893652742144
author Pizzato, Jade
Tang, Wenhao
Bernabeu, Sandrine
Bonnin, Rémy A.
Bille, Emmanuelle
Farfour, Eric
Guillard, Thomas
Barraud, Olivier
Cattoir, Vincent
Plouzeau, Chloe
Corvec, Stéphane
Shahrezaei, Vahid
Dortet, Laurent
Larrouy‐Maumus, Gerald
author_facet Pizzato, Jade
Tang, Wenhao
Bernabeu, Sandrine
Bonnin, Rémy A.
Bille, Emmanuelle
Farfour, Eric
Guillard, Thomas
Barraud, Olivier
Cattoir, Vincent
Plouzeau, Chloe
Corvec, Stéphane
Shahrezaei, Vahid
Dortet, Laurent
Larrouy‐Maumus, Gerald
author_sort Pizzato, Jade
collection PubMed
description Matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry (MALDI‐TOF MS) has become a staple in clinical microbiology laboratories. Protein‐profiling of bacteria using this technique has accelerated the identification of pathogens in diagnostic workflows. Recently, lipid profiling has emerged as a way to complement bacterial identification where protein‐based methods fail to provide accurate results. This study aimed to address the challenge of rapid discrimination between Escherichia coli and Shigella spp. using MALDI‐TOF MS in the negative ion mode for lipid profiling coupled with machine learning. Both E. coli and Shigella species are closely related; they share high sequence homology, reported for 16S rRNA gene sequence similarities between E. coli and Shigella spp. exceeding 99%, and a similar protein expression pattern but are epidemiologically distinct. A bacterial collection of 45 E. coli, 48 Shigella flexneri, and 62 Shigella sonnei clinical isolates were submitted to lipid profiling in negative ion mode using the MALDI Biotyper Sirius® system after treatment with mild‐acid hydrolysis (acetic acid 1% v/v for 15 min at 98°C). Spectra were then analyzed using our in‐house machine learning algorithm and top‐ranked features used for the discrimination of the bacterial species. Here, as a proof‐of‐concept, we showed that lipid profiling might have the potential to differentiate E. coli from Shigella species using the analysis of the top five ranked features obtained by MALDI‐TOF MS in the negative ion mode of the MALDI Biotyper Sirius® system. Based on this new approach, MALDI‐TOF MS analysis of lipids might help pave the way toward these goals.
format Online
Article
Text
id pubmed-9405496
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-94054962022-08-26 Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning Pizzato, Jade Tang, Wenhao Bernabeu, Sandrine Bonnin, Rémy A. Bille, Emmanuelle Farfour, Eric Guillard, Thomas Barraud, Olivier Cattoir, Vincent Plouzeau, Chloe Corvec, Stéphane Shahrezaei, Vahid Dortet, Laurent Larrouy‐Maumus, Gerald Microbiologyopen Commentary Matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry (MALDI‐TOF MS) has become a staple in clinical microbiology laboratories. Protein‐profiling of bacteria using this technique has accelerated the identification of pathogens in diagnostic workflows. Recently, lipid profiling has emerged as a way to complement bacterial identification where protein‐based methods fail to provide accurate results. This study aimed to address the challenge of rapid discrimination between Escherichia coli and Shigella spp. using MALDI‐TOF MS in the negative ion mode for lipid profiling coupled with machine learning. Both E. coli and Shigella species are closely related; they share high sequence homology, reported for 16S rRNA gene sequence similarities between E. coli and Shigella spp. exceeding 99%, and a similar protein expression pattern but are epidemiologically distinct. A bacterial collection of 45 E. coli, 48 Shigella flexneri, and 62 Shigella sonnei clinical isolates were submitted to lipid profiling in negative ion mode using the MALDI Biotyper Sirius® system after treatment with mild‐acid hydrolysis (acetic acid 1% v/v for 15 min at 98°C). Spectra were then analyzed using our in‐house machine learning algorithm and top‐ranked features used for the discrimination of the bacterial species. Here, as a proof‐of‐concept, we showed that lipid profiling might have the potential to differentiate E. coli from Shigella species using the analysis of the top five ranked features obtained by MALDI‐TOF MS in the negative ion mode of the MALDI Biotyper Sirius® system. Based on this new approach, MALDI‐TOF MS analysis of lipids might help pave the way toward these goals. John Wiley and Sons Inc. 2022-08-25 /pmc/articles/PMC9405496/ /pubmed/36004556 http://dx.doi.org/10.1002/mbo3.1313 Text en © 2022 The Authors. Microbiology Open published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Commentary
Pizzato, Jade
Tang, Wenhao
Bernabeu, Sandrine
Bonnin, Rémy A.
Bille, Emmanuelle
Farfour, Eric
Guillard, Thomas
Barraud, Olivier
Cattoir, Vincent
Plouzeau, Chloe
Corvec, Stéphane
Shahrezaei, Vahid
Dortet, Laurent
Larrouy‐Maumus, Gerald
Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning
title Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning
title_full Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning
title_fullStr Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning
title_full_unstemmed Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning
title_short Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning
title_sort discrimination of escherichia coli, shigella flexneri, and shigella sonnei using lipid profiling by maldi‐tof mass spectrometry paired with machine learning
topic Commentary
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405496/
https://www.ncbi.nlm.nih.gov/pubmed/36004556
http://dx.doi.org/10.1002/mbo3.1313
work_keys_str_mv AT pizzatojade discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning
AT tangwenhao discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning
AT bernabeusandrine discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning
AT bonninremya discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning
AT billeemmanuelle discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning
AT farfoureric discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning
AT guillardthomas discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning
AT barraudolivier discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning
AT cattoirvincent discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning
AT plouzeauchloe discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning
AT corvecstephane discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning
AT shahrezaeivahid discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning
AT dortetlaurent discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning
AT larrouymaumusgerald discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning