Cargando…
Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning
Matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry (MALDI‐TOF MS) has become a staple in clinical microbiology laboratories. Protein‐profiling of bacteria using this technique has accelerated the identification of pathogens in diagnostic workflows. Recently, lipid profiling...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405496/ https://www.ncbi.nlm.nih.gov/pubmed/36004556 http://dx.doi.org/10.1002/mbo3.1313 |
_version_ | 1784773893652742144 |
---|---|
author | Pizzato, Jade Tang, Wenhao Bernabeu, Sandrine Bonnin, Rémy A. Bille, Emmanuelle Farfour, Eric Guillard, Thomas Barraud, Olivier Cattoir, Vincent Plouzeau, Chloe Corvec, Stéphane Shahrezaei, Vahid Dortet, Laurent Larrouy‐Maumus, Gerald |
author_facet | Pizzato, Jade Tang, Wenhao Bernabeu, Sandrine Bonnin, Rémy A. Bille, Emmanuelle Farfour, Eric Guillard, Thomas Barraud, Olivier Cattoir, Vincent Plouzeau, Chloe Corvec, Stéphane Shahrezaei, Vahid Dortet, Laurent Larrouy‐Maumus, Gerald |
author_sort | Pizzato, Jade |
collection | PubMed |
description | Matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry (MALDI‐TOF MS) has become a staple in clinical microbiology laboratories. Protein‐profiling of bacteria using this technique has accelerated the identification of pathogens in diagnostic workflows. Recently, lipid profiling has emerged as a way to complement bacterial identification where protein‐based methods fail to provide accurate results. This study aimed to address the challenge of rapid discrimination between Escherichia coli and Shigella spp. using MALDI‐TOF MS in the negative ion mode for lipid profiling coupled with machine learning. Both E. coli and Shigella species are closely related; they share high sequence homology, reported for 16S rRNA gene sequence similarities between E. coli and Shigella spp. exceeding 99%, and a similar protein expression pattern but are epidemiologically distinct. A bacterial collection of 45 E. coli, 48 Shigella flexneri, and 62 Shigella sonnei clinical isolates were submitted to lipid profiling in negative ion mode using the MALDI Biotyper Sirius® system after treatment with mild‐acid hydrolysis (acetic acid 1% v/v for 15 min at 98°C). Spectra were then analyzed using our in‐house machine learning algorithm and top‐ranked features used for the discrimination of the bacterial species. Here, as a proof‐of‐concept, we showed that lipid profiling might have the potential to differentiate E. coli from Shigella species using the analysis of the top five ranked features obtained by MALDI‐TOF MS in the negative ion mode of the MALDI Biotyper Sirius® system. Based on this new approach, MALDI‐TOF MS analysis of lipids might help pave the way toward these goals. |
format | Online Article Text |
id | pubmed-9405496 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94054962022-08-26 Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning Pizzato, Jade Tang, Wenhao Bernabeu, Sandrine Bonnin, Rémy A. Bille, Emmanuelle Farfour, Eric Guillard, Thomas Barraud, Olivier Cattoir, Vincent Plouzeau, Chloe Corvec, Stéphane Shahrezaei, Vahid Dortet, Laurent Larrouy‐Maumus, Gerald Microbiologyopen Commentary Matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry (MALDI‐TOF MS) has become a staple in clinical microbiology laboratories. Protein‐profiling of bacteria using this technique has accelerated the identification of pathogens in diagnostic workflows. Recently, lipid profiling has emerged as a way to complement bacterial identification where protein‐based methods fail to provide accurate results. This study aimed to address the challenge of rapid discrimination between Escherichia coli and Shigella spp. using MALDI‐TOF MS in the negative ion mode for lipid profiling coupled with machine learning. Both E. coli and Shigella species are closely related; they share high sequence homology, reported for 16S rRNA gene sequence similarities between E. coli and Shigella spp. exceeding 99%, and a similar protein expression pattern but are epidemiologically distinct. A bacterial collection of 45 E. coli, 48 Shigella flexneri, and 62 Shigella sonnei clinical isolates were submitted to lipid profiling in negative ion mode using the MALDI Biotyper Sirius® system after treatment with mild‐acid hydrolysis (acetic acid 1% v/v for 15 min at 98°C). Spectra were then analyzed using our in‐house machine learning algorithm and top‐ranked features used for the discrimination of the bacterial species. Here, as a proof‐of‐concept, we showed that lipid profiling might have the potential to differentiate E. coli from Shigella species using the analysis of the top five ranked features obtained by MALDI‐TOF MS in the negative ion mode of the MALDI Biotyper Sirius® system. Based on this new approach, MALDI‐TOF MS analysis of lipids might help pave the way toward these goals. John Wiley and Sons Inc. 2022-08-25 /pmc/articles/PMC9405496/ /pubmed/36004556 http://dx.doi.org/10.1002/mbo3.1313 Text en © 2022 The Authors. Microbiology Open published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Commentary Pizzato, Jade Tang, Wenhao Bernabeu, Sandrine Bonnin, Rémy A. Bille, Emmanuelle Farfour, Eric Guillard, Thomas Barraud, Olivier Cattoir, Vincent Plouzeau, Chloe Corvec, Stéphane Shahrezaei, Vahid Dortet, Laurent Larrouy‐Maumus, Gerald Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning |
title | Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning |
title_full | Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning |
title_fullStr | Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning |
title_full_unstemmed | Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning |
title_short | Discrimination of Escherichia coli, Shigella flexneri, and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning |
title_sort | discrimination of escherichia coli, shigella flexneri, and shigella sonnei using lipid profiling by maldi‐tof mass spectrometry paired with machine learning |
topic | Commentary |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405496/ https://www.ncbi.nlm.nih.gov/pubmed/36004556 http://dx.doi.org/10.1002/mbo3.1313 |
work_keys_str_mv | AT pizzatojade discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning AT tangwenhao discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning AT bernabeusandrine discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning AT bonninremya discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning AT billeemmanuelle discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning AT farfoureric discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning AT guillardthomas discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning AT barraudolivier discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning AT cattoirvincent discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning AT plouzeauchloe discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning AT corvecstephane discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning AT shahrezaeivahid discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning AT dortetlaurent discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning AT larrouymaumusgerald discriminationofescherichiacolishigellaflexneriandshigellasonneiusinglipidprofilingbymalditofmassspectrometrypairedwithmachinelearning |