Cargando…
Detection of Structural Variants by NGS: Revealing Missing Alleles in Lysosomal Storage Diseases
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare multisystem metabolic disorders occurring mostly in infancy and childhood, characterized by a gradual accumulation of non-degraded substrates inside the cells. Although biochemical enzymatic assays are considered the gold standard f...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405548/ https://www.ncbi.nlm.nih.gov/pubmed/36009380 http://dx.doi.org/10.3390/biomedicines10081836 |
_version_ | 1784773905114726400 |
---|---|
author | La Cognata, Valentina Cavallaro, Sebastiano |
author_facet | La Cognata, Valentina Cavallaro, Sebastiano |
author_sort | La Cognata, Valentina |
collection | PubMed |
description | Lysosomal storage diseases (LSDs) are a heterogeneous group of rare multisystem metabolic disorders occurring mostly in infancy and childhood, characterized by a gradual accumulation of non-degraded substrates inside the cells. Although biochemical enzymatic assays are considered the gold standard for diagnosis of symptomatic patients, genotyping is a requirement for inclusion in enzyme replacement programs and is a prerequisite for carrier tests in relatives and DNA-based prenatal diagnosis. The emerging next-generation sequencing (NGS) technologies are now offering a powerful diagnostic tool for genotyping LSDs patients by providing faster, cheaper, and higher-resolution testing options, and are allowing to unravel, in a single integrated workflow SNVs, small insertions and deletions (indels), as well as major structural variations (SVs) responsible for the pathology. Here, we summarize the current knowledge about the most recurrent and private SVs involving LSDs-related genes, review advantages and drawbacks related to the use of the NGS in the SVs detection, and discuss the challenges to bring this type of analysis in clinical diagnostics. |
format | Online Article Text |
id | pubmed-9405548 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94055482022-08-26 Detection of Structural Variants by NGS: Revealing Missing Alleles in Lysosomal Storage Diseases La Cognata, Valentina Cavallaro, Sebastiano Biomedicines Review Lysosomal storage diseases (LSDs) are a heterogeneous group of rare multisystem metabolic disorders occurring mostly in infancy and childhood, characterized by a gradual accumulation of non-degraded substrates inside the cells. Although biochemical enzymatic assays are considered the gold standard for diagnosis of symptomatic patients, genotyping is a requirement for inclusion in enzyme replacement programs and is a prerequisite for carrier tests in relatives and DNA-based prenatal diagnosis. The emerging next-generation sequencing (NGS) technologies are now offering a powerful diagnostic tool for genotyping LSDs patients by providing faster, cheaper, and higher-resolution testing options, and are allowing to unravel, in a single integrated workflow SNVs, small insertions and deletions (indels), as well as major structural variations (SVs) responsible for the pathology. Here, we summarize the current knowledge about the most recurrent and private SVs involving LSDs-related genes, review advantages and drawbacks related to the use of the NGS in the SVs detection, and discuss the challenges to bring this type of analysis in clinical diagnostics. MDPI 2022-07-29 /pmc/articles/PMC9405548/ /pubmed/36009380 http://dx.doi.org/10.3390/biomedicines10081836 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review La Cognata, Valentina Cavallaro, Sebastiano Detection of Structural Variants by NGS: Revealing Missing Alleles in Lysosomal Storage Diseases |
title | Detection of Structural Variants by NGS: Revealing Missing Alleles in Lysosomal Storage Diseases |
title_full | Detection of Structural Variants by NGS: Revealing Missing Alleles in Lysosomal Storage Diseases |
title_fullStr | Detection of Structural Variants by NGS: Revealing Missing Alleles in Lysosomal Storage Diseases |
title_full_unstemmed | Detection of Structural Variants by NGS: Revealing Missing Alleles in Lysosomal Storage Diseases |
title_short | Detection of Structural Variants by NGS: Revealing Missing Alleles in Lysosomal Storage Diseases |
title_sort | detection of structural variants by ngs: revealing missing alleles in lysosomal storage diseases |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405548/ https://www.ncbi.nlm.nih.gov/pubmed/36009380 http://dx.doi.org/10.3390/biomedicines10081836 |
work_keys_str_mv | AT lacognatavalentina detectionofstructuralvariantsbyngsrevealingmissingallelesinlysosomalstoragediseases AT cavallarosebastiano detectionofstructuralvariantsbyngsrevealingmissingallelesinlysosomalstoragediseases |