Cargando…
GraphSite: Ligand Binding Site Classification with Deep Graph Learning
The binding of small organic molecules to protein targets is fundamental to a wide array of cellular functions. It is also routinely exploited to develop new therapeutic strategies against a variety of diseases. On that account, the ability to effectively detect and classify ligand binding sites in...
Autores principales: | Shi, Wentao, Singha, Manali, Pu, Limeng, Srivastava, Gopal, Ramanujam, Jagannathan, Brylinski, Michal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405584/ https://www.ncbi.nlm.nih.gov/pubmed/36008947 http://dx.doi.org/10.3390/biom12081053 |
Ejemplares similares
-
Pocket2Drug: An Encoder-Decoder Deep Neural Network for the Target-Based Drug Design
por: Shi, Wentao, et al.
Publicado: (2022) -
An integrated network representation of multiple cancer-specific data for graph-based machine learning
por: Pu, Limeng, et al.
Publicado: (2022) -
GraphDTI: A robust deep learning predictor of drug-target interactions from multiple heterogeneous data
por: Liu, Guannan, et al.
Publicado: (2021) -
CancerOmicsNet: a multi-omics network-based approach to anti-cancer drug profiling
por: Pu, Limeng, et al.
Publicado: (2022) -
DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network
por: Pu, Limeng, et al.
Publicado: (2019)