Cargando…
A Machine Learning Approach to Identify the Importance of Novel Features for CRISPR/Cas9 Activity Prediction
The reprogrammable CRISPR/Cas9 genome editing tool’s growing popularity is hindered by unwanted off-target effects. Efforts have been directed toward designing efficient guide RNAs as well as identifying potential off-target threats, yet factors that determine efficiency and off-target activity rema...
Autores principales: | Vora, Dhvani Sandip, Verma, Yugesh, Sundar, Durai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405635/ https://www.ncbi.nlm.nih.gov/pubmed/36009017 http://dx.doi.org/10.3390/biom12081123 |
Ejemplares similares
-
Hybrid Multitask Learning Reveals Sequence Features Driving Specificity in the CRISPR/Cas9 System
por: Vora, Dhvani Sandip, et al.
Publicado: (2023) -
And … cut! Identifying chromatin features affecting CRISPR–Cas9 activity in plants
por: Dubois, Marieke
Publicado: (2022) -
Comprehensive CRISPR-Cas9 screen identifies factors which are important for plasmablast development
por: Pinter, Theresa, et al.
Publicado: (2022) -
Machine learning in the estimation of CRISPR-Cas9 cleavage sites for plant system
por: Das, Jutan, et al.
Publicado: (2023) -
CRISPRcasIdentifier: Machine learning for accurate identification and classification of CRISPR-Cas systems
por: Padilha, Victor A, et al.
Publicado: (2020)