Cargando…
Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors
Aptamers are chemically synthesized single-stranded DNA or RNA oligonucleotides widely used nowadays in sensors and nanoscale devices as highly sensitive biorecognition elements. With proper design, aptamers are able to bind to a specific target molecule with high selectivity. To date, the systemati...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405846/ https://www.ncbi.nlm.nih.gov/pubmed/36004970 http://dx.doi.org/10.3390/bios12080574 |
_version_ | 1784773977600688128 |
---|---|
author | Douaki, Ali Garoli, Denis Inam, A. K. M. Sarwar Angeli, Martina Aurora Costa Cantarella, Giuseppe Rocchia, Walter Wang, Jiahai Petti, Luisa Lugli, Paolo |
author_facet | Douaki, Ali Garoli, Denis Inam, A. K. M. Sarwar Angeli, Martina Aurora Costa Cantarella, Giuseppe Rocchia, Walter Wang, Jiahai Petti, Luisa Lugli, Paolo |
author_sort | Douaki, Ali |
collection | PubMed |
description | Aptamers are chemically synthesized single-stranded DNA or RNA oligonucleotides widely used nowadays in sensors and nanoscale devices as highly sensitive biorecognition elements. With proper design, aptamers are able to bind to a specific target molecule with high selectivity. To date, the systematic evolution of ligands by exponential enrichment (SELEX) process is employed to isolate aptamers. Nevertheless, this method requires complex and time-consuming procedures. In silico methods comprising machine learning models have been recently proposed to reduce the time and cost of aptamer design. In this work, we present a new in silico approach allowing the generation of highly sensitive and selective RNA aptamers towards a specific target, here represented by ammonium dissolved in water. By using machine learning and bioinformatics tools, a rational design of aptamers is demonstrated. This “smart” SELEX method is experimentally proved by choosing the best five aptamer candidates obtained from the design process and applying them as functional elements in an electrochemical sensor to detect, as the target molecule, ammonium at different concentrations. We observed that the use of five different aptamers leads to a significant difference in the sensor’s response. This can be explained by considering the aptamers’ conformational change due to their interaction with the target molecule. We studied these conformational changes using a molecular dynamics simulation and suggested a possible explanation of the experimental observations. Finally, electrochemical measurements exposing the same sensors to different molecules were used to confirm the high selectivity of the designed aptamers. The proposed in silico SELEX approach can potentially reduce the cost and the time needed to identify the aptamers and potentially be applied to any target molecule. |
format | Online Article Text |
id | pubmed-9405846 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94058462022-08-26 Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors Douaki, Ali Garoli, Denis Inam, A. K. M. Sarwar Angeli, Martina Aurora Costa Cantarella, Giuseppe Rocchia, Walter Wang, Jiahai Petti, Luisa Lugli, Paolo Biosensors (Basel) Article Aptamers are chemically synthesized single-stranded DNA or RNA oligonucleotides widely used nowadays in sensors and nanoscale devices as highly sensitive biorecognition elements. With proper design, aptamers are able to bind to a specific target molecule with high selectivity. To date, the systematic evolution of ligands by exponential enrichment (SELEX) process is employed to isolate aptamers. Nevertheless, this method requires complex and time-consuming procedures. In silico methods comprising machine learning models have been recently proposed to reduce the time and cost of aptamer design. In this work, we present a new in silico approach allowing the generation of highly sensitive and selective RNA aptamers towards a specific target, here represented by ammonium dissolved in water. By using machine learning and bioinformatics tools, a rational design of aptamers is demonstrated. This “smart” SELEX method is experimentally proved by choosing the best five aptamer candidates obtained from the design process and applying them as functional elements in an electrochemical sensor to detect, as the target molecule, ammonium at different concentrations. We observed that the use of five different aptamers leads to a significant difference in the sensor’s response. This can be explained by considering the aptamers’ conformational change due to their interaction with the target molecule. We studied these conformational changes using a molecular dynamics simulation and suggested a possible explanation of the experimental observations. Finally, electrochemical measurements exposing the same sensors to different molecules were used to confirm the high selectivity of the designed aptamers. The proposed in silico SELEX approach can potentially reduce the cost and the time needed to identify the aptamers and potentially be applied to any target molecule. MDPI 2022-07-27 /pmc/articles/PMC9405846/ /pubmed/36004970 http://dx.doi.org/10.3390/bios12080574 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Douaki, Ali Garoli, Denis Inam, A. K. M. Sarwar Angeli, Martina Aurora Costa Cantarella, Giuseppe Rocchia, Walter Wang, Jiahai Petti, Luisa Lugli, Paolo Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors |
title | Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors |
title_full | Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors |
title_fullStr | Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors |
title_full_unstemmed | Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors |
title_short | Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors |
title_sort | smart approach for the design of highly selective aptamer-based biosensors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405846/ https://www.ncbi.nlm.nih.gov/pubmed/36004970 http://dx.doi.org/10.3390/bios12080574 |
work_keys_str_mv | AT douakiali smartapproachforthedesignofhighlyselectiveaptamerbasedbiosensors AT garolidenis smartapproachforthedesignofhighlyselectiveaptamerbasedbiosensors AT inamakmsarwar smartapproachforthedesignofhighlyselectiveaptamerbasedbiosensors AT angelimartinaauroracosta smartapproachforthedesignofhighlyselectiveaptamerbasedbiosensors AT cantarellagiuseppe smartapproachforthedesignofhighlyselectiveaptamerbasedbiosensors AT rocchiawalter smartapproachforthedesignofhighlyselectiveaptamerbasedbiosensors AT wangjiahai smartapproachforthedesignofhighlyselectiveaptamerbasedbiosensors AT pettiluisa smartapproachforthedesignofhighlyselectiveaptamerbasedbiosensors AT luglipaolo smartapproachforthedesignofhighlyselectiveaptamerbasedbiosensors |