Cargando…
Detecting Fear-Memory-Related Genes from Neuronal scRNA-seq Data by Diverse Distributions and Bhattacharyya Distance
The detection of differentially expressed genes (DEGs) is one of most important computational challenges in the analysis of single-cell RNA sequencing (scRNA-seq) data. However, due to the high heterogeneity and dropout noise inherent in scRNAseq data, challenges in detecting DEGs exist when using a...
Autores principales: | Zhang, Shaoqiang, Xie, Linjuan, Cui, Yaxuan, Carone, Benjamin R., Chen, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405875/ https://www.ncbi.nlm.nih.gov/pubmed/36009024 http://dx.doi.org/10.3390/biom12081130 |
Ejemplares similares
-
Fast and memory-efficient scRNA-seq k-means clustering with various distances
por: Baker, Daniel N., et al.
Publicado: (2021) -
Probing regenerative heterogeneity of corticospinal neurons with scRNA-Seq
por: Kim, Hugo, et al.
Publicado: (2023) -
ScRNA-seq and ST-seq in liver research
por: He, Jia, et al.
Publicado: (2023) -
scRNASequest: an ecosystem of scRNA-seq analysis, visualization, and publishing
por: Li, Kejie, et al.
Publicado: (2023) -
A clustering method for small scRNA-seq data based on subspace and weighted distance
por: Ning, Zilan, et al.
Publicado: (2023)