Cargando…

Interleukin-4 Receptor Targeting Peptide Decorated Extracellular Vesicles as a Platform for In Vivo Drug Delivery to Thyroid Cancer

Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been demonstrated to deliver therapeutic drugs in preclinical studies. However, their use is limited, as they lack the ability to specifically deliver drugs to tumor tissues in vivo. In the present study, we propose the use of a t...

Descripción completa

Detalles Bibliográficos
Autores principales: Gangadaran, Prakash, Gunassekaran, Gowri Rangaswamy, Rajendran, Ramya Lakshmi, Oh, Ji Min, Vadevoo, Sri Murugan Poongkavithai, Lee, Ho Won, Hong, Chae Moon, Lee, Byungheon, Lee, Jaetae, Ahn, Byeong-Cheol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406005/
https://www.ncbi.nlm.nih.gov/pubmed/36009525
http://dx.doi.org/10.3390/biomedicines10081978
Descripción
Sumario:Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been demonstrated to deliver therapeutic drugs in preclinical studies. However, their use is limited, as they lack the ability to specifically deliver drugs to tumor tissues in vivo. In the present study, we propose the use of a targeting peptide, IL-4R-binding peptide (IL4RPep-1), to specifically deliver intravenously (i.v.) infused EVs to thyroid tumors. In vivo, a xenograft tumor model was treated with either the control peptide (NSSSVDK) or IL4RPep-1-Flamma; mice were fluorescently imaged (FLI) using an in vivo imaging system at 0–3 h post-treatment. EVs (labeled with DiD dye) were conjugated with IL4RPep-1 through a DOPE-NHS linker and administered to mice intravenously. FLI was performed 0–24 h post-injection, and the animals were sacrificed for further experiments. The morphology and size of EVs, the presence of EV markers such as CD63 and ALIX, and the absence of the markers GM130 and Cyto-C were confirmed. In vivo, FLI indicated an accumulation of i.v. injected IL4RPep-1-Flamma at the tumor site 90 min post-injection. No accumulation of NSSSVDK-Flamma was detected. In vivo, IL4RPep-1-EVs targeted the Cal-62 tumor 2 h post-injection. NSSSVDK-EVs were not even detected in the tumor 24 h post-injection. The quantification of FLI showed a significant accumulation of MSC-EVs in the tumor 2 h, 3 h, and 24 h post-injection. Furthermore, ex vivo imaging and an IF analysis confirmed the in vivo findings. Our results demonstrate the use of the IL4RPep-1 peptide as a targeting moiety of EVs for IL-4R-expressing anaplastic thyroid tumors.