Cargando…
Comprehensive analysis of ferroptosis-related gene signatures as a potential therapeutic target for acute myeloid leukemia: A bioinformatics analysis and experimental verification
BACKGROUND: Ferroptosis plays an important role in the development of acute myeloid leukemia (AML); however, the exact role of ferroptosis-related genes in the prognosis of AML patients is unclear. METHODS: RNA sequencing data and the clinicopathological characteristics of AML patients were obtained...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406152/ https://www.ncbi.nlm.nih.gov/pubmed/36033479 http://dx.doi.org/10.3389/fonc.2022.930654 |
_version_ | 1784774052561289216 |
---|---|
author | Zheng, Zhiyuan Hong, Xiaoying Huang, Xiaoxue Jiang, Xiandong Jiang, He Huang, Yingying Wu, Wei Xue, Yan Lin, Donghong |
author_facet | Zheng, Zhiyuan Hong, Xiaoying Huang, Xiaoxue Jiang, Xiandong Jiang, He Huang, Yingying Wu, Wei Xue, Yan Lin, Donghong |
author_sort | Zheng, Zhiyuan |
collection | PubMed |
description | BACKGROUND: Ferroptosis plays an important role in the development of acute myeloid leukemia (AML); however, the exact role of ferroptosis-related genes in the prognosis of AML patients is unclear. METHODS: RNA sequencing data and the clinicopathological characteristics of AML patients were obtained from The Cancer Genome Atlas database, and ferroptosis-related genes were obtained from the FerrDb database. Cox regression analysis and least absolute shrinkage and selection operator analysis were performed to identify ferroptosis-related gene signatures. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and single-sample gene set enrichment analysis (ssGSEA) were performed to explore the biological functions of the ferroptosis-related genes. Finally, ferroptosis of AML cells was induced by erastin and sulfasalazine to detect the changes in the expression of relevant prognostic genes and explore the underlying mechanisms using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: Seven ferroptosis-related gene signatures (SOCS1, ACSF2, MYB, EIF2AK4, AIFM2, SLC7A11, and GPX4) were identified in the training group. Kaplan-Meier and Cox regression analyses confirmed that risk score was an independent prognostic predictor of AML in the training and validation groups (P<0.05). Further, functional enrichment analysis revealed that seven ferroptosis-related genes were associated with many immune-related biological processes. Most importantly, erastin and sulfasalazine can induce the ferroptosis of AML cells. Overall, SLC7A11 and the SLC7A11/xCT-GSH-GPX4 pathway may be the respective key gene and potential regulatory pathway in erastin- and sulfasalazine-induced ferroptosis of AML cells. CONCLUSIONS: A novel signature involving seven ferroptosis-related genes that could accurately predict AML prognosis was identified. Further, the Food and Drug Administration-approved drug, sulfasalazine, was demonstrated for the first time to induce the ferroptosis of AML cells. SLC7A11 and the SLC7A11/xCT-GSH-GPX4 pathway may be the respective key gene and underlying mechanism in this process, ultimately providing new insights into the strategies for the development of new AML therapies. |
format | Online Article Text |
id | pubmed-9406152 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94061522022-08-26 Comprehensive analysis of ferroptosis-related gene signatures as a potential therapeutic target for acute myeloid leukemia: A bioinformatics analysis and experimental verification Zheng, Zhiyuan Hong, Xiaoying Huang, Xiaoxue Jiang, Xiandong Jiang, He Huang, Yingying Wu, Wei Xue, Yan Lin, Donghong Front Oncol Oncology BACKGROUND: Ferroptosis plays an important role in the development of acute myeloid leukemia (AML); however, the exact role of ferroptosis-related genes in the prognosis of AML patients is unclear. METHODS: RNA sequencing data and the clinicopathological characteristics of AML patients were obtained from The Cancer Genome Atlas database, and ferroptosis-related genes were obtained from the FerrDb database. Cox regression analysis and least absolute shrinkage and selection operator analysis were performed to identify ferroptosis-related gene signatures. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and single-sample gene set enrichment analysis (ssGSEA) were performed to explore the biological functions of the ferroptosis-related genes. Finally, ferroptosis of AML cells was induced by erastin and sulfasalazine to detect the changes in the expression of relevant prognostic genes and explore the underlying mechanisms using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: Seven ferroptosis-related gene signatures (SOCS1, ACSF2, MYB, EIF2AK4, AIFM2, SLC7A11, and GPX4) were identified in the training group. Kaplan-Meier and Cox regression analyses confirmed that risk score was an independent prognostic predictor of AML in the training and validation groups (P<0.05). Further, functional enrichment analysis revealed that seven ferroptosis-related genes were associated with many immune-related biological processes. Most importantly, erastin and sulfasalazine can induce the ferroptosis of AML cells. Overall, SLC7A11 and the SLC7A11/xCT-GSH-GPX4 pathway may be the respective key gene and potential regulatory pathway in erastin- and sulfasalazine-induced ferroptosis of AML cells. CONCLUSIONS: A novel signature involving seven ferroptosis-related genes that could accurately predict AML prognosis was identified. Further, the Food and Drug Administration-approved drug, sulfasalazine, was demonstrated for the first time to induce the ferroptosis of AML cells. SLC7A11 and the SLC7A11/xCT-GSH-GPX4 pathway may be the respective key gene and underlying mechanism in this process, ultimately providing new insights into the strategies for the development of new AML therapies. Frontiers Media S.A. 2022-08-11 /pmc/articles/PMC9406152/ /pubmed/36033479 http://dx.doi.org/10.3389/fonc.2022.930654 Text en Copyright © 2022 Zheng, Hong, Huang, Jiang, Jiang, Huang, Wu, Xue and Lin https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Zheng, Zhiyuan Hong, Xiaoying Huang, Xiaoxue Jiang, Xiandong Jiang, He Huang, Yingying Wu, Wei Xue, Yan Lin, Donghong Comprehensive analysis of ferroptosis-related gene signatures as a potential therapeutic target for acute myeloid leukemia: A bioinformatics analysis and experimental verification |
title | Comprehensive analysis of ferroptosis-related gene signatures as a potential therapeutic target for acute myeloid leukemia: A bioinformatics analysis and experimental verification |
title_full | Comprehensive analysis of ferroptosis-related gene signatures as a potential therapeutic target for acute myeloid leukemia: A bioinformatics analysis and experimental verification |
title_fullStr | Comprehensive analysis of ferroptosis-related gene signatures as a potential therapeutic target for acute myeloid leukemia: A bioinformatics analysis and experimental verification |
title_full_unstemmed | Comprehensive analysis of ferroptosis-related gene signatures as a potential therapeutic target for acute myeloid leukemia: A bioinformatics analysis and experimental verification |
title_short | Comprehensive analysis of ferroptosis-related gene signatures as a potential therapeutic target for acute myeloid leukemia: A bioinformatics analysis and experimental verification |
title_sort | comprehensive analysis of ferroptosis-related gene signatures as a potential therapeutic target for acute myeloid leukemia: a bioinformatics analysis and experimental verification |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406152/ https://www.ncbi.nlm.nih.gov/pubmed/36033479 http://dx.doi.org/10.3389/fonc.2022.930654 |
work_keys_str_mv | AT zhengzhiyuan comprehensiveanalysisofferroptosisrelatedgenesignaturesasapotentialtherapeutictargetforacutemyeloidleukemiaabioinformaticsanalysisandexperimentalverification AT hongxiaoying comprehensiveanalysisofferroptosisrelatedgenesignaturesasapotentialtherapeutictargetforacutemyeloidleukemiaabioinformaticsanalysisandexperimentalverification AT huangxiaoxue comprehensiveanalysisofferroptosisrelatedgenesignaturesasapotentialtherapeutictargetforacutemyeloidleukemiaabioinformaticsanalysisandexperimentalverification AT jiangxiandong comprehensiveanalysisofferroptosisrelatedgenesignaturesasapotentialtherapeutictargetforacutemyeloidleukemiaabioinformaticsanalysisandexperimentalverification AT jianghe comprehensiveanalysisofferroptosisrelatedgenesignaturesasapotentialtherapeutictargetforacutemyeloidleukemiaabioinformaticsanalysisandexperimentalverification AT huangyingying comprehensiveanalysisofferroptosisrelatedgenesignaturesasapotentialtherapeutictargetforacutemyeloidleukemiaabioinformaticsanalysisandexperimentalverification AT wuwei comprehensiveanalysisofferroptosisrelatedgenesignaturesasapotentialtherapeutictargetforacutemyeloidleukemiaabioinformaticsanalysisandexperimentalverification AT xueyan comprehensiveanalysisofferroptosisrelatedgenesignaturesasapotentialtherapeutictargetforacutemyeloidleukemiaabioinformaticsanalysisandexperimentalverification AT lindonghong comprehensiveanalysisofferroptosisrelatedgenesignaturesasapotentialtherapeutictargetforacutemyeloidleukemiaabioinformaticsanalysisandexperimentalverification |