Cargando…

Estrogen Related Receptor Alpha (ERRα) a Bridge between Metabolism and Adrenocortical Cancer Progression

SIMPLE SUMMARY: Adrenocortical carcinoma (ACC) is a rare and highly aggressive tumor associated with a very poor prognosis, mostly due to a high risk of recurrence and limited therapeutic options. The identification of “master regulators” of the metabolic changes occurring in cancer cells could offe...

Descripción completa

Detalles Bibliográficos
Autores principales: Avena, Paola, De Luca, Arianna, Chimento, Adele, Nocito, Marta Claudia, Sculco, Sara, La Padula, Davide, Zavaglia, Lucia, Giulietti, Matteo, Hantel, Constanze, Sirianni, Rosa, Casaburi, Ivan, Pezzi, Vincenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406166/
https://www.ncbi.nlm.nih.gov/pubmed/36010877
http://dx.doi.org/10.3390/cancers14163885
Descripción
Sumario:SIMPLE SUMMARY: Adrenocortical carcinoma (ACC) is a rare and highly aggressive tumor associated with a very poor prognosis, mostly due to a high risk of recurrence and limited therapeutic options. The identification of “master regulators” of the metabolic changes occurring in cancer cells could offer new targets for innovative therapies. Such a strategy has never been used against ACC progression. In this study, we identify ERRα as key player in ACC metabolism and its targeting can prevent progression to a more aggressive phenotype. The development of new therapeutic strategies to selectively target ERRα in the adrenal with a selective antagonist would hinder ACC progression, avoiding off-target effects. ABSTRACT: The aim of this study was to investigate the metabolic changes that occur in adrenocortical cancer (ACC) cells in response to the modulation of Estrogen Related Receptor (ERR)α expression and the impact on ACC progression. Proteomics analysis and metabolic profiling highlighted an important role for ERRα in the regulation of ACC metabolism. Stable ERRα overexpression in H295R cells promoted a better mitochondrial fitness and prompted toward a more aggressive phenotype characterized by higher Vimentin expression, enhanced cell migration and spheroids formation. By contrast, a decrease in ERRα protein levels, by molecular (short hairpin RNA) and pharmacological (inverse agonist XCT790) approaches modified the energetic status toward a low energy profile and reduced Vimentin expression and ability to form spheroids. XCT790 produced similar effects on two additional ACC cell lines, SW13 and mitotane-resistant MUC-1 cells. Our findings show that ERRα is able to modulate the metabolic profile of ACC cells, and its inhibition can strongly prevent the growth of mitotane-resistant ACC cells and the progression of ACC cell models to a highly migratory phenotype. Consequently, ERRα can be considered an important target for the design of new therapeutic strategies to fight ACC progression.