Cargando…
A Novel Deep Learning Radiomics Model to Discriminate AD, MCI and NC: An Exploratory Study Based on Tau PET Scans from ADNI †
Objective: We explored a novel model based on deep learning radiomics (DLR) to differentiate Alzheimer’s disease (AD) patients, mild cognitive impairment (MCI) patients and normal control (NC) subjects. This model was validated in an exploratory study using tau positron emission tomography (tau-PET)...
Autores principales: | Zhao, Yan, Zhang, Jieming, Chen, Yue, Jiang, Jiehui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406185/ https://www.ncbi.nlm.nih.gov/pubmed/36009130 http://dx.doi.org/10.3390/brainsci12081067 |
Ejemplares similares
-
Baseline MRI Predictors of Conversion from MCI to Probable AD in the ADNI Cohort
por: Risacher, Shannon L, et al.
Publicado: (2009) -
Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data
por: Ye, Jieping, et al.
Publicado: (2012) -
Head injury is associated with tau deposition on PET in MCI and AD patients
por: Risacher, Shannon L., et al.
Publicado: (2021) -
Heterogeneity of Tau Deposition and Microvascular Involvement in MCI and AD
por: Bryant, Annie G., et al.
Publicado: (2021) -
Imago Mundi, Imago AD, Imago ADNI
por: Villemagne, Victor L, et al.
Publicado: (2014)