Cargando…
A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer
SIMPLE SUMMARY: In this study, we aimed to build a machine-learning predictive model for the identification of triple negative breast cancer, the most aggressive subtype, using quantitative parameters and radiomics features extracted from tumor lesions on hybrid PET/MRI. The good performance of the...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406327/ https://www.ncbi.nlm.nih.gov/pubmed/36010936 http://dx.doi.org/10.3390/cancers14163944 |
_version_ | 1784774093568999424 |
---|---|
author | Romeo, Valeria Kapetas, Panagiotis Clauser, Paola Baltzer, Pascal A. T. Rasul, Sazan Gibbs, Peter Hacker, Marcus Woitek, Ramona Pinker, Katja Helbich, Thomas H. |
author_facet | Romeo, Valeria Kapetas, Panagiotis Clauser, Paola Baltzer, Pascal A. T. Rasul, Sazan Gibbs, Peter Hacker, Marcus Woitek, Ramona Pinker, Katja Helbich, Thomas H. |
author_sort | Romeo, Valeria |
collection | PubMed |
description | SIMPLE SUMMARY: In this study, we aimed to build a machine-learning predictive model for the identification of triple negative breast cancer, the most aggressive subtype, using quantitative parameters and radiomics features extracted from tumor lesions on hybrid PET/MRI. The good performance of the model supports the hypothesis that hybrid PET/MRI can provide quantitative data able to non-invasively detect tumor biological characteristics using artificial intelligence software and further encourages the conduction of additional studies for this purpose. ABSTRACT: Purpose: To investigate whether a machine learning (ML)-based radiomics model applied to (18)F-FDG PET/MRI is effective in molecular subtyping of breast cancer (BC) and specifically in discriminating triple negative (TN) from other molecular subtypes of BC. Methods: Eighty-six patients with 98 BC lesions (Luminal A = 10, Luminal B = 51, HER2+ = 12, TN = 25) were included and underwent simultaneous (18)F-FDG PET/MRI of the breast. A 3D segmentation of BC lesion was performed on T2w, DCE, DWI and PET images. Quantitative diffusion and metabolic parameters were calculated and radiomics features extracted. Data were selected using the LASSO regression and used by a fine gaussian support vector machine (SVM) classifier with a 5-fold cross validation for identification of TNBC lesions. Results: Eight radiomics models were built based on different combinations of quantitative parameters and/or radiomic features. The best performance (AUROC 0.887, accuracy 82.8%, sensitivity 79.7%, specificity 86%, PPV 85.3%, NPV 80.8%) was found for the model combining first order, neighborhood gray level dependence matrix and size zone matrix-based radiomics features extracted from ADC and PET images. Conclusion: A ML-based radiomics model applied to (18)F-FDG PET/MRI is able to non-invasively discriminate TNBC lesions from other BC molecular subtypes with high accuracy. In a future perspective, a “virtual biopsy” might be performed with radiomics signatures. |
format | Online Article Text |
id | pubmed-9406327 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94063272022-08-26 A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer Romeo, Valeria Kapetas, Panagiotis Clauser, Paola Baltzer, Pascal A. T. Rasul, Sazan Gibbs, Peter Hacker, Marcus Woitek, Ramona Pinker, Katja Helbich, Thomas H. Cancers (Basel) Article SIMPLE SUMMARY: In this study, we aimed to build a machine-learning predictive model for the identification of triple negative breast cancer, the most aggressive subtype, using quantitative parameters and radiomics features extracted from tumor lesions on hybrid PET/MRI. The good performance of the model supports the hypothesis that hybrid PET/MRI can provide quantitative data able to non-invasively detect tumor biological characteristics using artificial intelligence software and further encourages the conduction of additional studies for this purpose. ABSTRACT: Purpose: To investigate whether a machine learning (ML)-based radiomics model applied to (18)F-FDG PET/MRI is effective in molecular subtyping of breast cancer (BC) and specifically in discriminating triple negative (TN) from other molecular subtypes of BC. Methods: Eighty-six patients with 98 BC lesions (Luminal A = 10, Luminal B = 51, HER2+ = 12, TN = 25) were included and underwent simultaneous (18)F-FDG PET/MRI of the breast. A 3D segmentation of BC lesion was performed on T2w, DCE, DWI and PET images. Quantitative diffusion and metabolic parameters were calculated and radiomics features extracted. Data were selected using the LASSO regression and used by a fine gaussian support vector machine (SVM) classifier with a 5-fold cross validation for identification of TNBC lesions. Results: Eight radiomics models were built based on different combinations of quantitative parameters and/or radiomic features. The best performance (AUROC 0.887, accuracy 82.8%, sensitivity 79.7%, specificity 86%, PPV 85.3%, NPV 80.8%) was found for the model combining first order, neighborhood gray level dependence matrix and size zone matrix-based radiomics features extracted from ADC and PET images. Conclusion: A ML-based radiomics model applied to (18)F-FDG PET/MRI is able to non-invasively discriminate TNBC lesions from other BC molecular subtypes with high accuracy. In a future perspective, a “virtual biopsy” might be performed with radiomics signatures. MDPI 2022-08-16 /pmc/articles/PMC9406327/ /pubmed/36010936 http://dx.doi.org/10.3390/cancers14163944 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Romeo, Valeria Kapetas, Panagiotis Clauser, Paola Baltzer, Pascal A. T. Rasul, Sazan Gibbs, Peter Hacker, Marcus Woitek, Ramona Pinker, Katja Helbich, Thomas H. A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer |
title | A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer |
title_full | A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer |
title_fullStr | A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer |
title_full_unstemmed | A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer |
title_short | A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer |
title_sort | simultaneous multiparametric (18)f-fdg pet/mri radiomics model for the diagnosis of triple negative breast cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406327/ https://www.ncbi.nlm.nih.gov/pubmed/36010936 http://dx.doi.org/10.3390/cancers14163944 |
work_keys_str_mv | AT romeovaleria asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT kapetaspanagiotis asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT clauserpaola asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT baltzerpascalat asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT rasulsazan asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT gibbspeter asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT hackermarcus asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT woitekramona asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT pinkerkatja asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT helbichthomash asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT romeovaleria simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT kapetaspanagiotis simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT clauserpaola simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT baltzerpascalat simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT rasulsazan simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT gibbspeter simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT hackermarcus simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT woitekramona simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT pinkerkatja simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer AT helbichthomash simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer |