Cargando…

A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer

SIMPLE SUMMARY: In this study, we aimed to build a machine-learning predictive model for the identification of triple negative breast cancer, the most aggressive subtype, using quantitative parameters and radiomics features extracted from tumor lesions on hybrid PET/MRI. The good performance of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Romeo, Valeria, Kapetas, Panagiotis, Clauser, Paola, Baltzer, Pascal A. T., Rasul, Sazan, Gibbs, Peter, Hacker, Marcus, Woitek, Ramona, Pinker, Katja, Helbich, Thomas H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406327/
https://www.ncbi.nlm.nih.gov/pubmed/36010936
http://dx.doi.org/10.3390/cancers14163944
_version_ 1784774093568999424
author Romeo, Valeria
Kapetas, Panagiotis
Clauser, Paola
Baltzer, Pascal A. T.
Rasul, Sazan
Gibbs, Peter
Hacker, Marcus
Woitek, Ramona
Pinker, Katja
Helbich, Thomas H.
author_facet Romeo, Valeria
Kapetas, Panagiotis
Clauser, Paola
Baltzer, Pascal A. T.
Rasul, Sazan
Gibbs, Peter
Hacker, Marcus
Woitek, Ramona
Pinker, Katja
Helbich, Thomas H.
author_sort Romeo, Valeria
collection PubMed
description SIMPLE SUMMARY: In this study, we aimed to build a machine-learning predictive model for the identification of triple negative breast cancer, the most aggressive subtype, using quantitative parameters and radiomics features extracted from tumor lesions on hybrid PET/MRI. The good performance of the model supports the hypothesis that hybrid PET/MRI can provide quantitative data able to non-invasively detect tumor biological characteristics using artificial intelligence software and further encourages the conduction of additional studies for this purpose. ABSTRACT: Purpose: To investigate whether a machine learning (ML)-based radiomics model applied to (18)F-FDG PET/MRI is effective in molecular subtyping of breast cancer (BC) and specifically in discriminating triple negative (TN) from other molecular subtypes of BC. Methods: Eighty-six patients with 98 BC lesions (Luminal A = 10, Luminal B = 51, HER2+ = 12, TN = 25) were included and underwent simultaneous (18)F-FDG PET/MRI of the breast. A 3D segmentation of BC lesion was performed on T2w, DCE, DWI and PET images. Quantitative diffusion and metabolic parameters were calculated and radiomics features extracted. Data were selected using the LASSO regression and used by a fine gaussian support vector machine (SVM) classifier with a 5-fold cross validation for identification of TNBC lesions. Results: Eight radiomics models were built based on different combinations of quantitative parameters and/or radiomic features. The best performance (AUROC 0.887, accuracy 82.8%, sensitivity 79.7%, specificity 86%, PPV 85.3%, NPV 80.8%) was found for the model combining first order, neighborhood gray level dependence matrix and size zone matrix-based radiomics features extracted from ADC and PET images. Conclusion: A ML-based radiomics model applied to (18)F-FDG PET/MRI is able to non-invasively discriminate TNBC lesions from other BC molecular subtypes with high accuracy. In a future perspective, a “virtual biopsy” might be performed with radiomics signatures.
format Online
Article
Text
id pubmed-9406327
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94063272022-08-26 A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer Romeo, Valeria Kapetas, Panagiotis Clauser, Paola Baltzer, Pascal A. T. Rasul, Sazan Gibbs, Peter Hacker, Marcus Woitek, Ramona Pinker, Katja Helbich, Thomas H. Cancers (Basel) Article SIMPLE SUMMARY: In this study, we aimed to build a machine-learning predictive model for the identification of triple negative breast cancer, the most aggressive subtype, using quantitative parameters and radiomics features extracted from tumor lesions on hybrid PET/MRI. The good performance of the model supports the hypothesis that hybrid PET/MRI can provide quantitative data able to non-invasively detect tumor biological characteristics using artificial intelligence software and further encourages the conduction of additional studies for this purpose. ABSTRACT: Purpose: To investigate whether a machine learning (ML)-based radiomics model applied to (18)F-FDG PET/MRI is effective in molecular subtyping of breast cancer (BC) and specifically in discriminating triple negative (TN) from other molecular subtypes of BC. Methods: Eighty-six patients with 98 BC lesions (Luminal A = 10, Luminal B = 51, HER2+ = 12, TN = 25) were included and underwent simultaneous (18)F-FDG PET/MRI of the breast. A 3D segmentation of BC lesion was performed on T2w, DCE, DWI and PET images. Quantitative diffusion and metabolic parameters were calculated and radiomics features extracted. Data were selected using the LASSO regression and used by a fine gaussian support vector machine (SVM) classifier with a 5-fold cross validation for identification of TNBC lesions. Results: Eight radiomics models were built based on different combinations of quantitative parameters and/or radiomic features. The best performance (AUROC 0.887, accuracy 82.8%, sensitivity 79.7%, specificity 86%, PPV 85.3%, NPV 80.8%) was found for the model combining first order, neighborhood gray level dependence matrix and size zone matrix-based radiomics features extracted from ADC and PET images. Conclusion: A ML-based radiomics model applied to (18)F-FDG PET/MRI is able to non-invasively discriminate TNBC lesions from other BC molecular subtypes with high accuracy. In a future perspective, a “virtual biopsy” might be performed with radiomics signatures. MDPI 2022-08-16 /pmc/articles/PMC9406327/ /pubmed/36010936 http://dx.doi.org/10.3390/cancers14163944 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Romeo, Valeria
Kapetas, Panagiotis
Clauser, Paola
Baltzer, Pascal A. T.
Rasul, Sazan
Gibbs, Peter
Hacker, Marcus
Woitek, Ramona
Pinker, Katja
Helbich, Thomas H.
A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer
title A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer
title_full A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer
title_fullStr A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer
title_full_unstemmed A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer
title_short A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer
title_sort simultaneous multiparametric (18)f-fdg pet/mri radiomics model for the diagnosis of triple negative breast cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406327/
https://www.ncbi.nlm.nih.gov/pubmed/36010936
http://dx.doi.org/10.3390/cancers14163944
work_keys_str_mv AT romeovaleria asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT kapetaspanagiotis asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT clauserpaola asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT baltzerpascalat asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT rasulsazan asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT gibbspeter asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT hackermarcus asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT woitekramona asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT pinkerkatja asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT helbichthomash asimultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT romeovaleria simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT kapetaspanagiotis simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT clauserpaola simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT baltzerpascalat simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT rasulsazan simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT gibbspeter simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT hackermarcus simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT woitekramona simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT pinkerkatja simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer
AT helbichthomash simultaneousmultiparametric18ffdgpetmriradiomicsmodelforthediagnosisoftriplenegativebreastcancer