Cargando…
A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer
SIMPLE SUMMARY: In this study, we aimed to build a machine-learning predictive model for the identification of triple negative breast cancer, the most aggressive subtype, using quantitative parameters and radiomics features extracted from tumor lesions on hybrid PET/MRI. The good performance of the...
Autores principales: | Romeo, Valeria, Kapetas, Panagiotis, Clauser, Paola, Baltzer, Pascal A. T., Rasul, Sazan, Gibbs, Peter, Hacker, Marcus, Woitek, Ramona, Pinker, Katja, Helbich, Thomas H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406327/ https://www.ncbi.nlm.nih.gov/pubmed/36010936 http://dx.doi.org/10.3390/cancers14163944 |
Ejemplares similares
-
AI-enhanced simultaneous multiparametric (18)F-FDG PET/MRI for accurate breast cancer diagnosis
por: Romeo, V., et al.
Publicado: (2021) -
Simultaneous 18F-FDG PET/MRI Radiomics and Machine Learning Analysis of the Primary Breast Tumor for the Preoperative Prediction of Axillary Lymph Node Status in Breast Cancer
por: Romeo, Valeria, et al.
Publicado: (2023) -
Sequential [(18)F]FDG-[(18)F]FMISO PET and Multiparametric MRI at 3T for Insights into Breast Cancer Heterogeneity and Correlation with Patient Outcomes: First Clinical Experience
por: Andrzejewski, Piotr, et al.
Publicado: (2019) -
Virtual Touch IQ elastography reduces unnecessary breast biopsies by applying quantitative “rule-in” and “rule-out” threshold values
por: Kapetas, Panagiotis, et al.
Publicado: (2018) -
A Simple Ultrasound Based Classification Algorithm Allows Differentiation of Benign from Malignant Breast Lesions by Using Only Quantitative Parameters
por: Kapetas, Panagiotis, et al.
Publicado: (2018)