Cargando…
Breast Dense Tissue Segmentation with Noisy Labels: A Hybrid Threshold-Based and Mask-Based Approach
Breast density assessed from digital mammograms is a known biomarker related to a higher risk of developing breast cancer. Supervised learning algorithms have been implemented to determine this. However, the performance of these algorithms depends on the quality of the ground-truth information, whic...
Autores principales: | Larroza, Andrés, Pérez-Benito, Francisco Javier, Perez-Cortes, Juan-Carlos, Román, Marta, Pollán, Marina, Pérez-Gómez, Beatriz, Salas-Trejo, Dolores, Casals, María, Llobet, Rafael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406546/ https://www.ncbi.nlm.nih.gov/pubmed/36010173 http://dx.doi.org/10.3390/diagnostics12081822 |
Ejemplares similares
-
Validation of DM-Scan, a computer-assisted tool to assess mammographic density in full-field digital mammograms
por: Pollán, Marina, et al.
Publicado: (2013) -
Noisy-threshold control of cell death
por: Vilar, Jose MG
Publicado: (2010) -
Noisy iris smoothing and segmentation scheme based on improved Wildes method
por: Kumawat, Anchal, et al.
Publicado: (2022) -
A novel generic dictionary-based denoising method for improving noisy and densely packed nuclei segmentation in 3D time-lapse fluorescence microscopy images
por: Nasser, Lamees, et al.
Publicado: (2019) -
Mask Gradient Response-Based Threshold Segmentation for Surface Defect Detection of Milled Aluminum Ingot
por: Liang, Ying, et al.
Publicado: (2020)