Cargando…
Urolithins Modulate the Viability, Autophagy, Apoptosis, and Nephrin Turnover in Podocytes Exposed to High Glucose
Urolithins are bioactive compounds generated in human and animal intestines because of the bacterial metabolism of dietary ellagitannins (and their constituent, ellagic acid). Due to their multidirectional effects, including anti-inflammatory, antioxidant, anti-cancer, neuroprotective, and antiglyca...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406555/ https://www.ncbi.nlm.nih.gov/pubmed/36010548 http://dx.doi.org/10.3390/cells11162471 |
_version_ | 1784774149958270976 |
---|---|
author | Kotewicz, Milena Krauze-Baranowska, Mirosława Daca, Agnieszka Płoska, Agata Godlewska, Sylwia Kalinowski, Leszek Lewko, Barbara |
author_facet | Kotewicz, Milena Krauze-Baranowska, Mirosława Daca, Agnieszka Płoska, Agata Godlewska, Sylwia Kalinowski, Leszek Lewko, Barbara |
author_sort | Kotewicz, Milena |
collection | PubMed |
description | Urolithins are bioactive compounds generated in human and animal intestines because of the bacterial metabolism of dietary ellagitannins (and their constituent, ellagic acid). Due to their multidirectional effects, including anti-inflammatory, antioxidant, anti-cancer, neuroprotective, and antiglycative properties, urolithins are potential novel therapeutic agents. In this study, while considering the future possibility of using urolithins to improve podocyte function in diabetes, we assessed the results of exposing mouse podocytes cultured in normal (NG, 5.5 mM) and high (HG, 25 mM) glucose concentrations to urolithin A (UA) and urolithin B (UB). Podocytes metabolized UA to form glucuronides in a time-dependent manner; however, in HG conditions, the metabolism was lower than in NG conditions. In HG milieu, UA improved podocyte viability more efficiently than UB and reduced the reactive oxygen species level. Both types of urolithins showed cytotoxic activity at high (100 µM) concentration. The UA upregulated total and surface nephrin expression, which was paralleled by enhanced nephrin internalization. Regulation of nephrin turnover was independent of ambient glucose concentration. We conclude that UA affects podocytes in different metabolic and functional aspects. With respect to its pro-survival effects in HG-induced toxicity, UA could be considered as a potent therapeutic candidate against diabetic podocytopathy. |
format | Online Article Text |
id | pubmed-9406555 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94065552022-08-26 Urolithins Modulate the Viability, Autophagy, Apoptosis, and Nephrin Turnover in Podocytes Exposed to High Glucose Kotewicz, Milena Krauze-Baranowska, Mirosława Daca, Agnieszka Płoska, Agata Godlewska, Sylwia Kalinowski, Leszek Lewko, Barbara Cells Article Urolithins are bioactive compounds generated in human and animal intestines because of the bacterial metabolism of dietary ellagitannins (and their constituent, ellagic acid). Due to their multidirectional effects, including anti-inflammatory, antioxidant, anti-cancer, neuroprotective, and antiglycative properties, urolithins are potential novel therapeutic agents. In this study, while considering the future possibility of using urolithins to improve podocyte function in diabetes, we assessed the results of exposing mouse podocytes cultured in normal (NG, 5.5 mM) and high (HG, 25 mM) glucose concentrations to urolithin A (UA) and urolithin B (UB). Podocytes metabolized UA to form glucuronides in a time-dependent manner; however, in HG conditions, the metabolism was lower than in NG conditions. In HG milieu, UA improved podocyte viability more efficiently than UB and reduced the reactive oxygen species level. Both types of urolithins showed cytotoxic activity at high (100 µM) concentration. The UA upregulated total and surface nephrin expression, which was paralleled by enhanced nephrin internalization. Regulation of nephrin turnover was independent of ambient glucose concentration. We conclude that UA affects podocytes in different metabolic and functional aspects. With respect to its pro-survival effects in HG-induced toxicity, UA could be considered as a potent therapeutic candidate against diabetic podocytopathy. MDPI 2022-08-09 /pmc/articles/PMC9406555/ /pubmed/36010548 http://dx.doi.org/10.3390/cells11162471 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kotewicz, Milena Krauze-Baranowska, Mirosława Daca, Agnieszka Płoska, Agata Godlewska, Sylwia Kalinowski, Leszek Lewko, Barbara Urolithins Modulate the Viability, Autophagy, Apoptosis, and Nephrin Turnover in Podocytes Exposed to High Glucose |
title | Urolithins Modulate the Viability, Autophagy, Apoptosis, and Nephrin Turnover in Podocytes Exposed to High Glucose |
title_full | Urolithins Modulate the Viability, Autophagy, Apoptosis, and Nephrin Turnover in Podocytes Exposed to High Glucose |
title_fullStr | Urolithins Modulate the Viability, Autophagy, Apoptosis, and Nephrin Turnover in Podocytes Exposed to High Glucose |
title_full_unstemmed | Urolithins Modulate the Viability, Autophagy, Apoptosis, and Nephrin Turnover in Podocytes Exposed to High Glucose |
title_short | Urolithins Modulate the Viability, Autophagy, Apoptosis, and Nephrin Turnover in Podocytes Exposed to High Glucose |
title_sort | urolithins modulate the viability, autophagy, apoptosis, and nephrin turnover in podocytes exposed to high glucose |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406555/ https://www.ncbi.nlm.nih.gov/pubmed/36010548 http://dx.doi.org/10.3390/cells11162471 |
work_keys_str_mv | AT kotewiczmilena urolithinsmodulatetheviabilityautophagyapoptosisandnephrinturnoverinpodocytesexposedtohighglucose AT krauzebaranowskamirosława urolithinsmodulatetheviabilityautophagyapoptosisandnephrinturnoverinpodocytesexposedtohighglucose AT dacaagnieszka urolithinsmodulatetheviabilityautophagyapoptosisandnephrinturnoverinpodocytesexposedtohighglucose AT płoskaagata urolithinsmodulatetheviabilityautophagyapoptosisandnephrinturnoverinpodocytesexposedtohighglucose AT godlewskasylwia urolithinsmodulatetheviabilityautophagyapoptosisandnephrinturnoverinpodocytesexposedtohighglucose AT kalinowskileszek urolithinsmodulatetheviabilityautophagyapoptosisandnephrinturnoverinpodocytesexposedtohighglucose AT lewkobarbara urolithinsmodulatetheviabilityautophagyapoptosisandnephrinturnoverinpodocytesexposedtohighglucose |