Cargando…
Development of Novel Residual-Dense-Attention (RDA) U-Net Network Architecture for Hepatocellular Carcinoma Segmentation
The research was based on the image recognition technology of artificial intelligence, which is expected to assist physicians in making correct decisions through deep learning. The liver dataset used in this study was derived from the open source website (LiTS) and the data provided by the Kaohsiung...
Autores principales: | Chen, Wen-Fan, Ou, Hsin-You, Lin, Han-Yu, Wei, Chia-Po, Liao, Chien-Chang, Cheng, Yu-Fan, Pan, Cheng-Tang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406579/ https://www.ncbi.nlm.nih.gov/pubmed/36010265 http://dx.doi.org/10.3390/diagnostics12081916 |
Ejemplares similares
-
Development of Deep Learning with RDA U-Net Network for Bladder Cancer Segmentation
por: Lee, Ming-Chan, et al.
Publicado: (2023) -
DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022) -
Correction: DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022) -
Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net
por: Cheng, Pengfei, et al.
Publicado: (2021) -
DARU‐Net: A dual attention residual U‐Net for uterine fibroids segmentation on MRI
por: Zhang, Jian, et al.
Publicado: (2023)