Cargando…
K-Means Clustering for Shock Classification in Pediatric Intensive Care Units
Shock is described as an inadequate oxygen supply to the tissues and can be classified in multiple ways. In clinical practice still, old methods are used to discriminate these shock types. This article proposes the application of unsupervised classification methods for the stratification of these pa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406631/ https://www.ncbi.nlm.nih.gov/pubmed/36010281 http://dx.doi.org/10.3390/diagnostics12081932 |
_version_ | 1784774168010555392 |
---|---|
author | Rollán-Martínez-Herrera, María Kerexeta-Sarriegi, Jon Gil-Antón, Javier Pilar-Orive, Javier Macía-Oliver, Iván |
author_facet | Rollán-Martínez-Herrera, María Kerexeta-Sarriegi, Jon Gil-Antón, Javier Pilar-Orive, Javier Macía-Oliver, Iván |
author_sort | Rollán-Martínez-Herrera, María |
collection | PubMed |
description | Shock is described as an inadequate oxygen supply to the tissues and can be classified in multiple ways. In clinical practice still, old methods are used to discriminate these shock types. This article proposes the application of unsupervised classification methods for the stratification of these patients in order to treat them more appropriately. With a cohort of 90 patients admitted in pediatric intensive care units (PICU), the k-means algorithm was applied in the first 24 h data since admission (physiological and analytical variables and the need for devices), obtaining three main groups. Significant differences were found in variables used (e.g., mean diastolic arterial pressure p < 0.001, age p < 0.001) and not used for training (e.g., EtCO2 min p < 0.001, Troponin max p < 0.01), discharge diagnosis (p < 0.001) and outcomes (p < 0.05). Clustering classification equaled classical classification in its association with LOS (p = 0.01) and surpassed it in its association with mortality (p < 0.04 vs. p = 0.16). We have been able to classify shocked pediatric patients with higher outcome correlation than the clinical traditional method. These results support the utility of unsupervised learning algorithms for patient classification in PICU. |
format | Online Article Text |
id | pubmed-9406631 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94066312022-08-26 K-Means Clustering for Shock Classification in Pediatric Intensive Care Units Rollán-Martínez-Herrera, María Kerexeta-Sarriegi, Jon Gil-Antón, Javier Pilar-Orive, Javier Macía-Oliver, Iván Diagnostics (Basel) Article Shock is described as an inadequate oxygen supply to the tissues and can be classified in multiple ways. In clinical practice still, old methods are used to discriminate these shock types. This article proposes the application of unsupervised classification methods for the stratification of these patients in order to treat them more appropriately. With a cohort of 90 patients admitted in pediatric intensive care units (PICU), the k-means algorithm was applied in the first 24 h data since admission (physiological and analytical variables and the need for devices), obtaining three main groups. Significant differences were found in variables used (e.g., mean diastolic arterial pressure p < 0.001, age p < 0.001) and not used for training (e.g., EtCO2 min p < 0.001, Troponin max p < 0.01), discharge diagnosis (p < 0.001) and outcomes (p < 0.05). Clustering classification equaled classical classification in its association with LOS (p = 0.01) and surpassed it in its association with mortality (p < 0.04 vs. p = 0.16). We have been able to classify shocked pediatric patients with higher outcome correlation than the clinical traditional method. These results support the utility of unsupervised learning algorithms for patient classification in PICU. MDPI 2022-08-10 /pmc/articles/PMC9406631/ /pubmed/36010281 http://dx.doi.org/10.3390/diagnostics12081932 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rollán-Martínez-Herrera, María Kerexeta-Sarriegi, Jon Gil-Antón, Javier Pilar-Orive, Javier Macía-Oliver, Iván K-Means Clustering for Shock Classification in Pediatric Intensive Care Units |
title | K-Means Clustering for Shock Classification in Pediatric Intensive Care Units |
title_full | K-Means Clustering for Shock Classification in Pediatric Intensive Care Units |
title_fullStr | K-Means Clustering for Shock Classification in Pediatric Intensive Care Units |
title_full_unstemmed | K-Means Clustering for Shock Classification in Pediatric Intensive Care Units |
title_short | K-Means Clustering for Shock Classification in Pediatric Intensive Care Units |
title_sort | k-means clustering for shock classification in pediatric intensive care units |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406631/ https://www.ncbi.nlm.nih.gov/pubmed/36010281 http://dx.doi.org/10.3390/diagnostics12081932 |
work_keys_str_mv | AT rollanmartinezherreramaria kmeansclusteringforshockclassificationinpediatricintensivecareunits AT kerexetasarriegijon kmeansclusteringforshockclassificationinpediatricintensivecareunits AT gilantonjavier kmeansclusteringforshockclassificationinpediatricintensivecareunits AT pilarorivejavier kmeansclusteringforshockclassificationinpediatricintensivecareunits AT maciaoliverivan kmeansclusteringforshockclassificationinpediatricintensivecareunits |